Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 5/2022

01-05-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Investigation of Electronic States and Magnetic Domain Structure of La1 – xSmxMn2Si2 (x = 0, 0.25) Layered Intermetallic Compounds by Resonant Photoemission Spectroscopy and Magnetic Force Microscopy

Authors: T. V. Kuznetsova, Yu. V. Korkh, V. I. Grebennikov, D. I. Radzivonchik, E. A. Ponomareva, E. G. Gerasimov, N. V. Mushnikov

Published in: Physics of Metals and Metallography | Issue 5/2022

Login to get access
share
SHARE

Abstract

Electronic states on the surface of LaMn2Si2 and La0.75Sm0.25Mn2Si2 intermetallic compounds have been studied by resonant photoemission spectroscopy using synchrotron radiation, and the main regularities in the formation of the electronic structure upon partial substitution of samarium atoms for lanthanum have been found. The dependence of the shape of the spectra of the valence bands on the photon energy near the absorption edges of the internal levels of the components has been studied. The processes of direct and two-stage production of photoelectrons, elastic and inelastic channels of the decay of states with the emission of high-energy electrons due to intra-atomic Coulomb interaction have been studied. The features of the surface of the compounds at room temperature have been studied by atomic force and magnetic force microscopy. The presence of a complex magnetic domain structure in LaMn2Si2 in the case of partial substitution of samarium for lanthanum is also shown.
Literature
1.
go back to reference S. Pandey, V. Siruguri, and R. Rawat, “Effect of Tb substitution in naturally layered LaMn 2Si 2: magnetic, magnetocaloric, magnetoresistance and neutron diffraction study,” J. Phys.: Condens. Matter 32, 035807 (2020). S. Pandey, V. Siruguri, and R. Rawat, “Effect of Tb substitution in naturally layered LaMn 2Si 2: magnetic, magnetocaloric, magnetoresistance and neutron diffraction study,” J. Phys.: Condens. Matter 32, 035807 (2020).
2.
go back to reference E. G. Gerasimov, M. I. Kurkin, A. V. Korolyov, and V. S. Gaviko, “Magnetic anisotropy and ferro-antiferromagnetic phase transition in LaMn 2Si 2,” Phys. B: Condens. Matter 322, 297–305 (2002). CrossRef E. G. Gerasimov, M. I. Kurkin, A. V. Korolyov, and V. S. Gaviko, “Magnetic anisotropy and ferro-antiferromagnetic phase transition in LaMn 2Si 2,” Phys. B: Condens. Matter 322, 297–305 (2002). CrossRef
3.
go back to reference N. V. Mushnikov, E. G. Gerasimov, P. B. Terentev, and V. S. Gaviko, “Magnetic structures and magnetic phase transitions in RMn 2Si 2,” AIP Adv. 8, 101411 (2018). CrossRef N. V. Mushnikov, E. G. Gerasimov, P. B. Terentev, and V. S. Gaviko, “Magnetic structures and magnetic phase transitions in RMn 2Si 2,” AIP Adv. 8, 101411 (2018). CrossRef
4.
go back to reference E. G. Gerasimov, Yu. A. Dorofeev, V. S. Gaviko, A. N. Pirogov, A. E. Teplykh, J. Park, J. G. Park, C. S. Choi, and U. Kong, “Magnetic Structure and Magnetic Properties of the Intermetallic La 0.75Sm 0.25Mn 2Si 2 Compound,” Phys. Met. Metallogr. 94, 161–169 (2002). E. G. Gerasimov, Yu. A. Dorofeev, V. S. Gaviko, A. N. Pirogov, A. E. Teplykh, J. Park, J. G. Park, C. S. Choi, and U. Kong, “Magnetic Structure and Magnetic Properties of the Intermetallic La 0.75Sm 0.25Mn 2Si 2 Compound,” Phys. Met. Metallogr. 94, 161–169 (2002).
5.
go back to reference E. G. Gerasimov, V. S. Gaviko, V. N. Neverov, and A. V. Korolyov, “Magnetic phase transitions and giant magnetoresistance in La 1 – xSm xMn 2Si 2 (0 ≤ x ≤ 1),” J. Alloys Compd. 343, 14–25 (2002). CrossRef E. G. Gerasimov, V. S. Gaviko, V. N. Neverov, and A. V. Korolyov, “Magnetic phase transitions and giant magnetoresistance in La 1 – xSm xMn 2Si 2 (0 ≤ x ≤ 1),” J. Alloys Compd. 343, 14–25 (2002). CrossRef
6.
go back to reference N. V. Mushnikov and E. G. Gerasimov, “Magnetostriction of La 0.75Sm 0.25Mn 2Si 2 compound,” J. Alloys Compd. 676, 74–79 (2002). CrossRef N. V. Mushnikov and E. G. Gerasimov, “Magnetostriction of La 0.75Sm 0.25Mn 2Si 2 compound,” J. Alloys Compd. 676, 74–79 (2002). CrossRef
8.
go back to reference Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by “force microscopy” with 1000 Å resolution,” Appl. Phys. Lett. 50, No. 20, 1455–1457 (1987). CrossRef Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by “force microscopy” with 1000 Å resolution,” Appl. Phys. Lett. 50, No. 20, 1455–1457 (1987). CrossRef
9.
go back to reference V. L. Mironov, Fundamentals of Scanning Probe Microscopy. Teaching Course for Senior Students of Higher Educational Institutions (IPM RAS, Nizhnii Novgorod, 2004) [in Russian]. V. L. Mironov, Fundamentals of Scanning Probe Microscopy. Teaching Course for Senior Students of Higher Educational Institutions (IPM RAS, Nizhnii Novgorod, 2004) [in Russian].
10.
go back to reference O. Kazakova, R. Puttock, C. Barton, H. Corte-Leon, M. Jaafar, V. Neu, and A. Asenjo, “Frontiers of magnetic force microscopy,” J. Appl. Phys. 125, 060901 (2019). CrossRef O. Kazakova, R. Puttock, C. Barton, H. Corte-Leon, M. Jaafar, V. Neu, and A. Asenjo, “Frontiers of magnetic force microscopy,” J. Appl. Phys. 125, 060901 (2019). CrossRef
11.
go back to reference S.-W. Cheong, M. Fiebig, W. Wu, L. Chapon, and V. Kiryukhin, “Seeing is believing: Visualization of antiferromagnetic domains,” NPJ Quantum Mater. 5, No. 3 (2020). S.-W. Cheong, M. Fiebig, W. Wu, L. Chapon, and V. Kiryukhin, “Seeing is believing: Visualization of antiferromagnetic domains,” NPJ Quantum Mater. 5, No. 3 (2020).
12.
go back to reference S. Hüfner, Photoelectron Spectroscopy: Principles and Applications in Solid States Science. Springer Series in Solid-State Sciences (Springer, Berlin, 1995), Vol. 82. CrossRef S. Hüfner, Photoelectron Spectroscopy: Principles and Applications in Solid States Science. Springer Series in Solid-State Sciences (Springer, Berlin, 1995), Vol. 82. CrossRef
13.
go back to reference S. Mickevicius, S. Grebinskij, V. Bondarenka, H. Tvardauskas, M. Senulis, V. Lisauskas, K. Šliužiene, B. Vengalis, E. Baškys, and R. L. Johnson, “Resonant photoemission of LaNiO 3 – δ thin films,” Lithuanian J. Phys. 50, 241–246 (2010). CrossRef S. Mickevicius, S. Grebinskij, V. Bondarenka, H. Tvardauskas, M. Senulis, V. Lisauskas, K. Šliužiene, B. Vengalis, E. Baškys, and R. L. Johnson, “Resonant photoemission of LaNiO 3 – δ thin films,” Lithuanian J. Phys. 50, 241–246 (2010). CrossRef
14.
go back to reference O. -P. Sairanen, S. Aksela, and A. Kivimaki, “Resonace Auger and autoionization processes in solid lanthanum after 4 d → 4 f resonant excitation by synchrotron radiation,” J. Phys.: Condens. Matter 3, 8707 (1991). O. -P. Sairanen, S. Aksela, and A. Kivimaki, “Resonace Auger and autoionization processes in solid lanthanum after 4 d → 4 f resonant excitation by synchrotron radiation,” J. Phys.: Condens. Matter 3, 8707 (1991).
15.
go back to reference T. Jarlborg, H. F. Braun, and M. Peter, “Structural properties and band structure of heavy fermion systems: CeCu 2Si 2 and LaCu 2Si 2,” Phys. B: Condens. Matter 52, 295–301 (1983). T. Jarlborg, H. F. Braun, and M. Peter, “Structural properties and band structure of heavy fermion systems: CeCu 2Si 2 and LaCu 2Si 2,” Phys. B: Condens. Matter 52, 295–301 (1983).
16.
go back to reference E. Weschke, C. Laubschat, T. Simmons, M. Domke, O. Strebel, and G. Kaindl, “Surface and bulk electronic structure of Ce metal studied by high-resolution resonant photoemission,” Phys. Rev. B 44, 8304 (1991). CrossRef E. Weschke, C. Laubschat, T. Simmons, M. Domke, O. Strebel, and G. Kaindl, “Surface and bulk electronic structure of Ce metal studied by high-resolution resonant photoemission,” Phys. Rev. B 44, 8304 (1991). CrossRef
17.
go back to reference S. L. Molodtsov, Yu. Kucherenko, D. V. Vyalikh, G. Behr, A. Starodubov, and C. Laubschat, “Strong hybridization of 4 f states of heavy rare earths in intermetallic compounds,” Phys. Rev. B 68, 193101 (2003). CrossRef S. L. Molodtsov, Yu. Kucherenko, D. V. Vyalikh, G. Behr, A. Starodubov, and C. Laubschat, “Strong hybridization of 4 f states of heavy rare earths in intermetallic compounds,” Phys. Rev. B 68, 193101 (2003). CrossRef
18.
go back to reference V. I. Grebennikov, T. V. Kuznetsova, and A. G. Kuchin, “Resonant photoemission spectroscopy study of the d and f states in GdNi 5 – xCu x intermetallics,” Bull. Russ. Acad. Sci.: Phys. 79, 134–138 (2015). CrossRef V. I. Grebennikov, T. V. Kuznetsova, and A. G. Kuchin, “Resonant photoemission spectroscopy study of the d and f states in GdNi 5 – xCu x intermetallics,” Bull. Russ. Acad. Sci.: Phys. 79, 134–138 (2015). CrossRef
19.
go back to reference V. I. Grebennikov, T. V. Kuznetsova, E. G. Gerasimov, and N. V. Mushnikov, “Effects of spin polarization on resonant photoemission from d– f states in TbNi 2Mn x compounds,” EPJ Web Conf. 185, 04008 (2018). V. I. Grebennikov, T. V. Kuznetsova, E. G. Gerasimov, and N. V. Mushnikov, “Effects of spin polarization on resonant photoemission from df states in TbNi 2Mn x compounds,” EPJ Web Conf. 185, 04008 (2018).
20.
go back to reference M. G. Silly, F. Charra, F. Lux, G. Lemercier, and F. Sirotti, “The electronic properties of mixed valence hydrated europium chloride thin film,” Phys. Chem. Chem. Phys. 17, 18403 (2015). CrossRef M. G. Silly, F. Charra, F. Lux, G. Lemercier, and F. Sirotti, “The electronic properties of mixed valence hydrated europium chloride thin film,” Phys. Chem. Chem. Phys. 17, 18403 (2015). CrossRef
21.
go back to reference K. Yamamoto, K. Horiba, M. Taguchi, M. Matsunami, N. Kamakura, A. Chainani, Y. Takata, K. Mimura, M. Shiga, H. Wada, Y. Senba, H. Ohashi, and S. Shin, “Temperature-dependent Eu 3 d−4 f X-ray absorption and resonant photoemission study of the valence transition in EuNi 2(Si 0.2Ge 0.8) 2,” Phys. Rev. B 72, 61101 (2005). CrossRef K. Yamamoto, K. Horiba, M. Taguchi, M. Matsunami, N. Kamakura, A. Chainani, Y. Takata, K. Mimura, M. Shiga, H. Wada, Y. Senba, H. Ohashi, and S. Shin, “Temperature-dependent Eu 3 d−4 f X-ray absorption and resonant photoemission study of the valence transition in EuNi 2(Si 0.2Ge 0.8) 2,” Phys. Rev. B 72, 61101 (2005). CrossRef
22.
go back to reference C. W. Chuang, Chiogo B. D. Tegomo, D. Malterre, P.‑Y. Chuang, C.-M. Cheng, T.-W. Pi, F.-H. Chang, H.-J. Lin, C.-T. Chen, C.-N. Kuo, C.-S. Lue, and A. Chainani, “Resonant photoemission spectroscopy of the ferromagnetic Kondo system CeAgSb 2,” Electron. Struct. 3, 034001 (2021). CrossRef C. W. Chuang, Chiogo B. D. Tegomo, D. Malterre, P.‑Y. Chuang, C.-M. Cheng, T.-W. Pi, F.-H. Chang, H.-J. Lin, C.-T. Chen, C.-N. Kuo, C.-S. Lue, and A. Chainani, “Resonant photoemission spectroscopy of the ferromagnetic Kondo system CeAgSb 2,” Electron. Struct. 3, 034001 (2021). CrossRef
23.
go back to reference L. Fernandez, M. Blanco-Rey, R. Castrillo-Bodero, M. Ilyn, K. Ali, E. Turco, M. Corso, M. Ormaza, P. Gargiani, M. A. Valbuena, A. Mugarza, P. Moras, P. M. Sheverdyaeva, A. K. Kundu, M. Jugovac, C. Laubschat, J. E. Ortega, and F. Schiller, “Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds,” Nanoscale 12, 22258–22267 (2020). CrossRef L. Fernandez, M. Blanco-Rey, R. Castrillo-Bodero, M. Ilyn, K. Ali, E. Turco, M. Corso, M. Ormaza, P. Gargiani, M. A. Valbuena, A. Mugarza, P. Moras, P. M. Sheverdyaeva, A. K. Kundu, M. Jugovac, C. Laubschat, J. E. Ortega, and F. Schiller, “Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds,” Nanoscale 12, 22258–22267 (2020). CrossRef
24.
go back to reference B. A. Orlowski, B. J. Kowalski, M. Pietrzyk, and R. Buczko, Acta Phys. Pol. A 114, 103–114 (2008). CrossRef B. A. Orlowski, B. J. Kowalski, M. Pietrzyk, and R. Buczko, Acta Phys. Pol. A 114, 103–114 (2008). CrossRef
25.
go back to reference B. A. Orlowski, E. Guziewicz, A. Reszka, M. A. Pietrzyk, B. J. Kowalski, and R. L. Johnson, “Fano resonance photoemission study of Sm on Pb 0.97Ge 0.03Te crystal,” Radiat. Phys. Chem. 175, 108080 (2020). CrossRef B. A. Orlowski, E. Guziewicz, A. Reszka, M. A. Pietrzyk, B. J. Kowalski, and R. L. Johnson, “Fano resonance photoemission study of Sm on Pb 0.97Ge 0.03Te crystal,” Radiat. Phys. Chem. 175, 108080 (2020). CrossRef
26.
go back to reference E. Guziewicz, B. A. Orlowski, B. J. Kowalski, I. A. Kowalik, A. Reszka, L. Wachnicki, S. Gieraltowska, M. Godlewski, and R. L. Johnson, “Gd and Sm on clean semiconductor surfaces—Resonant photoemission studies,” Appl. Surf. Sci. 282, 326–334 (2013). CrossRef E. Guziewicz, B. A. Orlowski, B. J. Kowalski, I. A. Kowalik, A. Reszka, L. Wachnicki, S. Gieraltowska, M. Godlewski, and R. L. Johnson, “Gd and Sm on clean semiconductor surfaces—Resonant photoemission studies,” Appl. Surf. Sci. 282, 326–334 (2013). CrossRef
27.
go back to reference J. M. Lawrence, P. S. Riseborough, and R. D. Parks, “Valence fluctuation phenomena,” Rep. Prog. Phys. 44, 1–84 (1981). CrossRef J. M. Lawrence, P. S. Riseborough, and R. D. Parks, “Valence fluctuation phenomena,” Rep. Prog. Phys. 44, 1–84 (1981). CrossRef
Metadata
Title
Investigation of Electronic States and Magnetic Domain Structure of La1 – xSmxMn2Si2 (x = 0, 0.25) Layered Intermetallic Compounds by Resonant Photoemission Spectroscopy and Magnetic Force Microscopy
Authors
T. V. Kuznetsova
Yu. V. Korkh
V. I. Grebennikov
D. I. Radzivonchik
E. A. Ponomareva
E. G. Gerasimov
N. V. Mushnikov
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050064