Skip to main content
Top
Published in: Environmental Earth Sciences 8/2019

01-04-2019 | Original Article

Investigation of legacy industrial mercury in floodplain soils: South River, Virginia, USA

Authors: Olesya Lazareva, Donald L. Sparks, Richard Landis, Carol J. Ptacek, Jing Ma

Published in: Environmental Earth Sciences | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mercury (Hg) was used during 1929–1950 as a catalyst to produce rayon acetate at the former DuPont plant in Waynesboro, Virginia, and released into the South River. Though the use of Hg ceased in the 1970s, the affected ecosystem is still a matter of concern. Here, high total mercury (THg) and total organomercury, stated as methylmercury (MeHg) are reported in historically contaminated floodplain soils and shallow groundwater from five locations sited 5.6 km downstream from the plant of one river edge site. In soils, THg ranged from 0.1 to 1201.5 mg/kg exceeding the health-based screening Hg levels for residential and industrial soils while MeHg varied between 0.1 and 54 µg/kg. Concentrations decreased sharply with depth indicating the stratification of legacy industrial Hg-rich soils underlain by the pre-industrial soils with minor Hg. Strong linear correlation between THg and MeHg was observed. Highest soil MeHg was associated with total carbon, poorly crystalline and amorphous Fe and/or Mn oxyhydroxides. Sequential extraction analyses indicated that Hg was present mostly in relatively recalcitrant forms, as determined with procedures that targeted β-HgS, HgS, HgSe, HgAu, thiol-bound Hg, Hg0, and some organo-complexed Hg, Hg2Cl2 phases. High Cu (≤ 404.3 mg/kg), Zn (≤ 151.3 mg/kg), Cr (≤ 123.9 mg/kg) were also identified. In shallow groundwater, THg ranged from 28 to 538 ng/L and MeHg varied between 1.2 and 137 ng/L. During the intermittent precipitation, the highest MeHg was linked to the highest Fe2+, Mn, SO42−, total alkalinity, and conductivity, which could be due to either the potential leaching and dissolution of soil minerals and/or the saturation of the vadose zone. A sharp increase in the soil moisture at the top 40–70 cm of the Hg-rich soils after rainfall and overbank flooding was followed by redox gradients from oxidizing (≈ + 600 mV) to reducing (≈ − 300 mV) and a reverse response in a transmissive gravel zone at the base of the bank (≈ − 400  to + 200 mV) with a defined lag with depth. These dynamic seasonal fluctuations at the South River might be crucial for solubilization of Hg, Fe, and Mn redox-sensitive minerals triggering the anoxic response for new MeHg production.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alpers CN, Hunerlach MP, May JT, Hothem RL, Taylor HE, Antweiler RC, De Wild JF, Lawler DA (2005) Geochemical characterization of water, sediment, and biota affected by mercury contamination and acidic drainage from historical gold mining, Greenhorn Creek, Nevada County, California, 1999–2001. U.S. Geological Survey Scientific Investigations Report 2004-5251, p 278 Alpers CN, Hunerlach MP, May JT, Hothem RL, Taylor HE, Antweiler RC, De Wild JF, Lawler DA (2005) Geochemical characterization of water, sediment, and biota affected by mercury contamination and acidic drainage from historical gold mining, Greenhorn Creek, Nevada County, California, 1999–2001. U.S. Geological Survey Scientific Investigations Report 2004-5251, p 278
go back to reference Alpers CN, Fleck JA, Marvin-DiPasquale M, Stricker CA, Stephenson M, Taylor HE (2014) Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: spatial and seasonal variations in water quality. Sci Total Environ 484(1):276–287CrossRef Alpers CN, Fleck JA, Marvin-DiPasquale M, Stricker CA, Stephenson M, Taylor HE (2014) Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: spatial and seasonal variations in water quality. Sci Total Environ 484(1):276–287CrossRef
go back to reference Amirbahman A, Schonenberger R, Johnson CA, Sigg L (1998) Aqueous- and solid- phase biochemistry of a calcareous aquifer system down gradient from a municipal solid waste landfill (Winterthur, Switzerland). Environ Sci Technol 32:1933–1940CrossRef Amirbahman A, Schonenberger R, Johnson CA, Sigg L (1998) Aqueous- and solid- phase biochemistry of a calcareous aquifer system down gradient from a municipal solid waste landfill (Winterthur, Switzerland). Environ Sci Technol 32:1933–1940CrossRef
go back to reference Barnett MO, Harris LA, Turner RR, Stevenson RJ, Henson TJ, Melton RC, Hoffman DP (1997) Formation of mercuric sulfide in soil. Environ Sci Technol 31:3037–3043CrossRef Barnett MO, Harris LA, Turner RR, Stevenson RJ, Henson TJ, Melton RC, Hoffman DP (1997) Formation of mercuric sulfide in soil. Environ Sci Technol 31:3037–3043CrossRef
go back to reference Barringer JL, Riskin ML, Szabo Z, Reilly PA, Rosman R, Bonin JL, Fischer JM, Heckathorn HA (2010) Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA. Water Air Soil Pollut 212:251–273CrossRef Barringer JL, Riskin ML, Szabo Z, Reilly PA, Rosman R, Bonin JL, Fischer JM, Heckathorn HA (2010) Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA. Water Air Soil Pollut 212:251–273CrossRef
go back to reference Bergeron CM, Husak JF, Unrine JM, Romanek CS, Hopkins WA (2007) Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environ Toxicol Chem 26:1733–1741CrossRef Bergeron CM, Husak JF, Unrine JM, Romanek CS, Hopkins WA (2007) Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environ Toxicol Chem 26:1733–1741CrossRef
go back to reference Bermond A, Ghestem J-P, Yousfi I (1998) Kinetic approach to the chemical speciation of trace metals in soils. Analyst 123:785–789CrossRef Bermond A, Ghestem J-P, Yousfi I (1998) Kinetic approach to the chemical speciation of trace metals in soils. Analyst 123:785–789CrossRef
go back to reference Bloom NS, Fitzgerald WF (1988) Determination of volatile mercury species at the pictogram level by low temperature gas chromatography with cold-vapor atomic fluorescence detection. Anal Chim Acta 208:151–161CrossRef Bloom NS, Fitzgerald WF (1988) Determination of volatile mercury species at the pictogram level by low temperature gas chromatography with cold-vapor atomic fluorescence detection. Anal Chim Acta 208:151–161CrossRef
go back to reference Bloom NS, Katon J (2000) Application of selective extractions to the determination of mercury speciation in mine tailings and adjacent soils. In: Proceeding of assessing and managing mercury from historic and current mining activities conference, San Francisco, pp 28–30 Bloom NS, Katon J (2000) Application of selective extractions to the determination of mercury speciation in mine tailings and adjacent soils. In: Proceeding of assessing and managing mercury from historic and current mining activities conference, San Francisco, pp 28–30
go back to reference Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248CrossRef Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248CrossRef
go back to reference Bolgiano RW (1980) Mercury contamination of the South, South Fork Shenandoah, and Shenandoah Rivers: Richmond, Virginia. Virginia State Water Control Board Basic Data Bulletin, p 47 Bolgiano RW (1980) Mercury contamination of the South, South Fork Shenandoah, and Shenandoah Rivers: Richmond, Virginia. Virginia State Water Control Board Basic Data Bulletin, p 47
go back to reference Bolgiano RW (1981) Mercury contamination of the floodplains of the South River and South Fork Shenandoah River. Basic Data Bulletin 48. Virginia State Water Control Board, Division of Surveillance and Field Studies, Valley Regional Office Bolgiano RW (1981) Mercury contamination of the floodplains of the South River and South Fork Shenandoah River. Basic Data Bulletin 48. Virginia State Water Control Board, Division of Surveillance and Field Studies, Valley Regional Office
go back to reference Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141CrossRef Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141CrossRef
go back to reference Brooks SC, Southworth GR (2011) History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant. Environ Pollut 159(1):219–228CrossRef Brooks SC, Southworth GR (2011) History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant. Environ Pollut 159(1):219–228CrossRef
go back to reference Carter LJ (1977) Chemical plants leave unexpected legacy for two Virginia rivers. Science 198:1015–1020CrossRef Carter LJ (1977) Chemical plants leave unexpected legacy for two Virginia rivers. Science 198:1015–1020CrossRef
go back to reference Christensen TH, Bjerg PL, Banwert RJ, Heron G, Albrechtsen H (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241CrossRef Christensen TH, Bjerg PL, Banwert RJ, Heron G, Albrechtsen H (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241CrossRef
go back to reference Covelli S, Acquavita A, Piani R, Predonzani S, De Vittor C (2009) Recent contamination of mercury in an estuarine environment (Marano Lagoon, Northern Adriatic, Italy). Estuar Coast Shelf Sci 82:273–284CrossRef Covelli S, Acquavita A, Piani R, Predonzani S, De Vittor C (2009) Recent contamination of mercury in an estuarine environment (Marano Lagoon, Northern Adriatic, Italy). Estuar Coast Shelf Sci 82:273–284CrossRef
go back to reference Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335CrossRef Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335CrossRef
go back to reference Deonarine A (2011) Sources and biogeochemical transformation of mercury in aquatic ecosystems. Ph.D. Dissertation, Duke University Deonarine A (2011) Sources and biogeochemical transformation of mercury in aquatic ecosystems. Ph.D. Dissertation, Duke University
go back to reference Deonarine A, Hsu-Kim H (2009) Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment. Environ Sci Technol 43(7):2368–2373CrossRef Deonarine A, Hsu-Kim H (2009) Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment. Environ Sci Technol 43(7):2368–2373CrossRef
go back to reference Desrochers KAN, Ptacek CJ, Gibson BD, Blowes DW, Landis RC, Dyer JA, Grosso NR (2011) Geochemical characterization and assessment of treatment mechanisms for mercury-contaminated riverbank sediments from the South River, VA. In: International conference on mercury as a global pollutant, Halifax, Nova Scotia, Canada Desrochers KAN, Ptacek CJ, Gibson BD, Blowes DW, Landis RC, Dyer JA, Grosso NR (2011) Geochemical characterization and assessment of treatment mechanisms for mercury-contaminated riverbank sediments from the South River, VA. In: International conference on mercury as a global pollutant, Halifax, Nova Scotia, Canada
go back to reference Desrochers KAN, Paulson KMA, Ptacek CJ, Blowes DW, Gould WD (2015) Effect of electron donor to sulfate ratio on mercury methylation in floodplain sediments under saturated flow conditions. Geomicrobiol J 32(10):924–933CrossRef Desrochers KAN, Paulson KMA, Ptacek CJ, Blowes DW, Gould WD (2015) Effect of electron donor to sulfate ratio on mercury methylation in floodplain sediments under saturated flow conditions. Geomicrobiol J 32(10):924–933CrossRef
go back to reference Donovan PM, Blum JD, Demers JD, Gu B, Brooks SC, Peryam J (2014) Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA. Environ Sci Technol 48(7):3666–3674CrossRef Donovan PM, Blum JD, Demers JD, Gu B, Brooks SC, Peryam J (2014) Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA. Environ Sci Technol 48(7):3666–3674CrossRef
go back to reference Eggleston J (2009) Mercury loads in the South River and simulation of mercury total maximum daily loads (TMDLs) for the South River, South Fork Shanandoah River and Shenandoah River: Shenandoah Valley, VA. U.S. Geological Survey, Reston, VACrossRef Eggleston J (2009) Mercury loads in the South River and simulation of mercury total maximum daily loads (TMDLs) for the South River, South Fork Shanandoah River and Shenandoah River: Shenandoah Valley, VA. U.S. Geological Survey, Reston, VACrossRef
go back to reference Fitzgerald WF, Lamborg CH (2007) Geochemistry of mercury in the environment. Chapter 9.04 In volume 9 environmental geochemistry. In: Lollar BS, Holland HD, Turekin KK (eds) Treatise on Geochemistry. Elsevier, Amsterdam, pp 107–148 Fitzgerald WF, Lamborg CH (2007) Geochemistry of mercury in the environment. Chapter 9.04 In volume 9 environmental geochemistry. In: Lollar BS, Holland HD, Turekin KK (eds) Treatise on Geochemistry. Elsevier, Amsterdam, pp 107–148
go back to reference Flanders JR, Turner RR, Morrison T, Jensen R, Pizzuto J, Skalak K, Stahl R (2010) Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream. Appl Geochem 25:1756–1769CrossRef Flanders JR, Turner RR, Morrison T, Jensen R, Pizzuto J, Skalak K, Stahl R (2010) Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream. Appl Geochem 25:1756–1769CrossRef
go back to reference Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464CrossRef Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464CrossRef
go back to reference Gagnon C, Pelletier E, Mucci A (1997) Behavior of anthropogenic mercury in coastal marine sediments. Mar Chem 59:159–176CrossRef Gagnon C, Pelletier E, Mucci A (1997) Behavior of anthropogenic mercury in coastal marine sediments. Mar Chem 59:159–176CrossRef
go back to reference Gerbig CA, Kim CS, Stegemeier JP, Ryan JN, Aiken GR (2011) Formation of nanocolloidal metacinnabar in mercury-DOM sulfide systems. Environ Sci Technol 45(21):9180–9187CrossRef Gerbig CA, Kim CS, Stegemeier JP, Ryan JN, Aiken GR (2011) Formation of nanocolloidal metacinnabar in mercury-DOM sulfide systems. Environ Sci Technol 45(21):9180–9187CrossRef
go back to reference Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77(12):3938–3951CrossRef Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77(12):3938–3951CrossRef
go back to reference Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, Johs A, Hurt RA, Bailey KL, Elias DA (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820CrossRef Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, Johs A, Hurt RA, Bailey KL, Elias DA (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820CrossRef
go back to reference Gray JE, Crock JG, Fey DL (2002) Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl Geochem 17(8):1069–1079CrossRef Gray JE, Crock JG, Fey DL (2002) Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl Geochem 17(8):1069–1079CrossRef
go back to reference Gustin MS, Chavan PV, Dennett KE, Marchand EA, Donaldson S (2006) Evaluation of wetland methyl mercury export as a function of experimental manipulations. J Environ Qual 35(6):2352–2359CrossRef Gustin MS, Chavan PV, Dennett KE, Marchand EA, Donaldson S (2006) Evaluation of wetland methyl mercury export as a function of experimental manipulations. J Environ Qual 35(6):2352–2359CrossRef
go back to reference Hamelin S, Amyot M, Barkay T, Wang YP, Planas D (2011) Methanogens: principal methylators of mercury in lake periphyton. Environ Sci Technol 45(18):7693–7700CrossRef Hamelin S, Amyot M, Barkay T, Wang YP, Planas D (2011) Methanogens: principal methylators of mercury in lake periphyton. Environ Sci Technol 45(18):7693–7700CrossRef
go back to reference Hennessy J (2009) Mercury in the South River, Waynesboro, VA. Ground Water Forum Case Studies, U.S. EPA Region 3, 32 Hennessy J (2009) Mercury in the South River, Waynesboro, VA. Ground Water Forum Case Studies, U.S. EPA Region 3, 32
go back to reference Hintelmann H (2010) Organomercurials. Their formation and pathways in the environment. Met Ions Life Sci 7:365–401CrossRef Hintelmann H (2010) Organomercurials. Their formation and pathways in the environment. Met Ions Life Sci 7:365–401CrossRef
go back to reference Horvat M, Liang L, Bloom NS (1993) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Anal Chim Acta 282:153–168CrossRef Horvat M, Liang L, Bloom NS (1993) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Anal Chim Acta 282:153–168CrossRef
go back to reference Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47:2441–2456CrossRef Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47:2441–2456CrossRef
go back to reference Hu H, Lin H, Zheng W, Tomanicek SJ, Johs A, Feng X, Elias DA, Liang L, Gu B (2013) Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat Geosci 6:751–754CrossRef Hu H, Lin H, Zheng W, Tomanicek SJ, Johs A, Feng X, Elias DA, Liang L, Gu B (2013) Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat Geosci 6:751–754CrossRef
go back to reference Jonsson S, Skyllberg U, Nilsson MB, Westlund P-O, Shchukarev A, Lundberg E, Bjorn E (2012) Mercury methylation rates for geochemically relevant HgII Species in sediments. Environ Sci Technol 46(21):11653–11659CrossRef Jonsson S, Skyllberg U, Nilsson MB, Westlund P-O, Shchukarev A, Lundberg E, Bjorn E (2012) Mercury methylation rates for geochemically relevant HgII Species in sediments. Environ Sci Technol 46(21):11653–11659CrossRef
go back to reference Jonsson S, Skyllberg U, Nilsson MB, Lundberg E, Andersson A, Björn E (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624CrossRef Jonsson S, Skyllberg U, Nilsson MB, Lundberg E, Andersson A, Björn E (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624CrossRef
go back to reference Jurk D (2012) Island formation through bar growth and floodplain incision in the bedrock controlled South River, Virginia. M.S. Thesis, University of Delaware Jurk D (2012) Island formation through bar growth and floodplain incision in the bedrock controlled South River, Virginia. M.S. Thesis, University of Delaware
go back to reference Kenwell AM (2013) Spatial distribution of iron and manganese solid phases for a mercury-impacted site. B.S. Thesis, University of Waterloo Kenwell AM (2013) Spatial distribution of iron and manganese solid phases for a mercury-impacted site. B.S. Thesis, University of Waterloo
go back to reference Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921CrossRef Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921CrossRef
go back to reference Kostka JE, Gribsholt B, Petrie E, Dalton D, Skelton H, Kristensen E (2002) The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Biogeochemistry 47:230–240 Kostka JE, Gribsholt B, Petrie E, Dalton D, Skelton H, Kristensen E (2002) The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Biogeochemistry 47:230–240
go back to reference Lawler MSE (1981) Engineering feasibility study of rehabilitating the South River and South Fork Shenandoah River. Vol I, Pearl River NY 10965 Lawler, Matusky & Skelly Engineers Report Lawler MSE (1981) Engineering feasibility study of rehabilitating the South River and South Fork Shenandoah River. Vol I, Pearl River NY 10965 Lawler, Matusky & Skelly Engineers Report
go back to reference Lin C-C, Yee N, Barkay T (2012) Microbial transformations in the mercury cycle. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. Wiley, Hoboken, NJ, pp 155–191CrossRef Lin C-C, Yee N, Barkay T (2012) Microbial transformations in the mercury cycle. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. Wiley, Hoboken, NJ, pp 155–191CrossRef
go back to reference Liu G, Cabrera J, Allen M, Cai Y (2006) Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci Total Environ 369:384–392CrossRef Liu G, Cabrera J, Allen M, Cai Y (2006) Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci Total Environ 369:384–392CrossRef
go back to reference Manceau A, Lemouchi C, Enescu M, Gaillot A-C, Lanson M, Magnin V, Glatzel P, Poulin BA, Ryan JN, Aiken GR, Gautier-Luneau I, Nagy KL (2015) Formation of mercury sulfide from Hg(II)—thiolate complexes in natural organic matter. Environ Sci Technol 49:9787–9796CrossRef Manceau A, Lemouchi C, Enescu M, Gaillot A-C, Lanson M, Magnin V, Glatzel P, Poulin BA, Ryan JN, Aiken GR, Gautier-Luneau I, Nagy KL (2015) Formation of mercury sulfide from Hg(II)—thiolate complexes in natural organic matter. Environ Sci Technol 49:9787–9796CrossRef
go back to reference Mitchell CPJ, Gilmour CC (2008) Methylmercury production in a Chesapeake Bay salt marsh. J Geophys Res [Biogeosci] 113:1–14 Mitchell CPJ, Gilmour CC (2008) Methylmercury production in a Chesapeake Bay salt marsh. J Geophys Res [Biogeosci] 113:1–14
go back to reference Moore CS, Cristol DA, Maddux SL, Varian-Ramos CW, Bradley EL (2014) Lifelong exposure to methylmercury disrupts stress-induced corticosterone response in zebra finches (Taeniopygia guttata). Environ Toxicol Chem 33(5):1072–1076CrossRef Moore CS, Cristol DA, Maddux SL, Varian-Ramos CW, Bradley EL (2014) Lifelong exposure to methylmercury disrupts stress-induced corticosterone response in zebra finches (Taeniopygia guttata). Environ Toxicol Chem 33(5):1072–1076CrossRef
go back to reference Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339(6125):1332–1335CrossRef Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339(6125):1332–1335CrossRef
go back to reference Pham AL-T, Morris A, Zhang T, Ticknor J, Levard C, Hsu-Kim H (2014) Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: structural properties, aggregation, and biotransformation. Geochim Cosmochim Acta 133:204–215CrossRef Pham AL-T, Morris A, Zhang T, Ticknor J, Levard C, Hsu-Kim H (2014) Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: structural properties, aggregation, and biotransformation. Geochim Cosmochim Acta 133:204–215CrossRef
go back to reference Pizzuto JP (2012) Predicting the accumulation of mercury-contaminated sediment on riverbanks-An analytical approach. Water Resour Res 48:W07518CrossRef Pizzuto JP (2012) Predicting the accumulation of mercury-contaminated sediment on riverbanks-An analytical approach. Water Resour Res 48:W07518CrossRef
go back to reference Pizzuto JP (2014) Long-term storage and transport length scale of fine sediment: analysis of a mercury release into a river. Geophys Res Lett 41:5875–5882CrossRef Pizzuto JP (2014) Long-term storage and transport length scale of fine sediment: analysis of a mercury release into a river. Geophys Res Lett 41:5875–5882CrossRef
go back to reference Pizzuto JP, O’Neal M (2009) Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia. Geology 37:19–22CrossRef Pizzuto JP, O’Neal M (2009) Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia. Geology 37:19–22CrossRef
go back to reference Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo AV, Somenahally AC, Elias DA (2015) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1(9):e1500675CrossRef Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo AV, Somenahally AC, Elias DA (2015) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1(9):e1500675CrossRef
go back to reference Poulin BA, Aiken GR, Nagy KL, Manceau A, Krabbenhoft DP, Ryan JN (2016) Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochim Cosmochim Acta 176:118–138CrossRef Poulin BA, Aiken GR, Nagy KL, Manceau A, Krabbenhoft DP, Ryan JN (2016) Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochim Cosmochim Acta 176:118–138CrossRef
go back to reference Rhoades EL, O’Neal MA, Pizzuto JE (2009) Quantifying bank erosion on the South River from 1937 to 2005, and its importance in assessing Hg contamination. Appl Geogr 29:125–134CrossRef Rhoades EL, O’Neal MA, Pizzuto JE (2009) Quantifying bank erosion on the South River from 1937 to 2005, and its importance in assessing Hg contamination. Appl Geogr 29:125–134CrossRef
go back to reference Schartup AT, Mason RP, Balcom PH, Hollweg TA, Chen CY (2013) Methylmercury production in estuarine sediments: role of organic matter. Environ Sci Technol 47(2):695–700CrossRef Schartup AT, Mason RP, Balcom PH, Hollweg TA, Chen CY (2013) Methylmercury production in estuarine sediments: role of organic matter. Environ Sci Technol 47(2):695–700CrossRef
go back to reference Skalak K, Pizzuto J (2010) The distribution and residence time of suspended sediment stored within the channel margins of a gravel-bed bedrock river. Earth Surf Process Landf 35(4):435–446 Skalak K, Pizzuto J (2010) The distribution and residence time of suspended sediment stored within the channel margins of a gravel-bed bedrock river. Earth Surf Process Landf 35(4):435–446
go back to reference Skalak KJ, Pizzuto J (2014) Reconstructing suspended sediment mercury contamination of a steep, gravel-bed river using reservoir theory. DEG 21(1):17–35 Skalak KJ, Pizzuto J (2014) Reconstructing suspended sediment mercury contamination of a steep, gravel-bed river using reservoir theory. DEG 21(1):17–35
go back to reference Slowey AJ (2010) Rate of formation and dissolution of mercury sulfide nanoparticles: the dual role of natural organic matter. Geochim Cosmochim Acta 74(16):4693–4708CrossRef Slowey AJ (2010) Rate of formation and dissolution of mercury sulfide nanoparticles: the dual role of natural organic matter. Geochim Cosmochim Acta 74(16):4693–4708CrossRef
go back to reference Southworth GR, Peterson MJ, Bogle MA (2004) Bioaccumulation factors for mercury in stream fish. Environ Pract 6:135–143CrossRef Southworth GR, Peterson MJ, Bogle MA (2004) Bioaccumulation factors for mercury in stream fish. Environ Pract 6:135–143CrossRef
go back to reference Stahl RG, Kain D, Bugas P, Grosso NP, Guiseppi-Elie A, Liberati MR (2014) Applying a watershed-level, risk-based approach to addressing legacy mercury contamination in the South River, Virginia: planning and problem formulation. Human Ecol Risk Assess 20(2):316–345CrossRef Stahl RG, Kain D, Bugas P, Grosso NP, Guiseppi-Elie A, Liberati MR (2014) Applying a watershed-level, risk-based approach to addressing legacy mercury contamination in the South River, Virginia: planning and problem formulation. Human Ecol Risk Assess 20(2):316–345CrossRef
go back to reference Stamenkovic J, Gustin MS, Dennett K (2005) Net methyl mercury production and water quality improvement in constructed wetlands at Steamboat Creek, Nevada. Wetlands 25:748–757CrossRef Stamenkovic J, Gustin MS, Dennett K (2005) Net methyl mercury production and water quality improvement in constructed wetlands at Steamboat Creek, Nevada. Wetlands 25:748–757CrossRef
go back to reference Turner RR, Southworth GR (1999) Mercury-contaminated industrial and mining sites in North America: an overview with selected case studies. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W (eds) Mercury contaminated sites—characterization, risk assessment and remediation. Springer-Verlag, Berlin, pp 89–112CrossRef Turner RR, Southworth GR (1999) Mercury-contaminated industrial and mining sites in North America: an overview with selected case studies. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W (eds) Mercury contaminated sites—characterization, risk assessment and remediation. Springer-Verlag, Berlin, pp 89–112CrossRef
go back to reference URS Corp (2012) Final report: Ecological study of the South River and a segment of the South Fork Shenandoah River, Virginia, Fort Washington, PA, p 1804 URS Corp (2012) Final report: Ecological study of the South River and a segment of the South Fork Shenandoah River, Virginia, Fort Washington, PA, p 1804
go back to reference USEPA (2009a) United States Environmental Protection Agency, Appendix A. Generic SSLs for the residential and commercial/industrial scenarios USEPA (2009a) United States Environmental Protection Agency, Appendix A. Generic SSLs for the residential and commercial/industrial scenarios
go back to reference USEPA (2009b) United States Environmental Protection Agency. National recommended water quality criteria USEPA (2009b) United States Environmental Protection Agency. National recommended water quality criteria
go back to reference Warner KA, Roden EE, Bonzongo JC (2003) Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol 37:2159–2165CrossRef Warner KA, Roden EE, Bonzongo JC (2003) Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol 37:2159–2165CrossRef
go back to reference White AE, Cristol DA (2014) Plumage coloration in Belted Kingfishers (Megaceryle alcyon) at a mercury-contaminated river. Waterbirds 37(2):144–152CrossRef White AE, Cristol DA (2014) Plumage coloration in Belted Kingfishers (Megaceryle alcyon) at a mercury-contaminated river. Waterbirds 37(2):144–152CrossRef
go back to reference Yu R, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T (2012) Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol 46:2684–2691CrossRef Yu R, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T (2012) Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol 46:2684–2691CrossRef
go back to reference Yu RQ, Reinfelder JR, Hines ME, Barkay T (2013) Mercury methylation by the methanogen Methanospirillum hungatei. Appl Environ Microbiol 79(20):6325–6330CrossRef Yu RQ, Reinfelder JR, Hines ME, Barkay T (2013) Mercury methylation by the methanogen Methanospirillum hungatei. Appl Environ Microbiol 79(20):6325–6330CrossRef
go back to reference Zhang T, Kucharzyk KH, Kim B, Deshusses MA, Hsu-Kim H (2014) Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 16:9133–9141CrossRef Zhang T, Kucharzyk KH, Kim B, Deshusses MA, Hsu-Kim H (2014) Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 16:9133–9141CrossRef
Metadata
Title
Investigation of legacy industrial mercury in floodplain soils: South River, Virginia, USA
Authors
Olesya Lazareva
Donald L. Sparks
Richard Landis
Carol J. Ptacek
Jing Ma
Publication date
01-04-2019
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 8/2019
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-019-8253-9

Other articles of this Issue 8/2019

Environmental Earth Sciences 8/2019 Go to the issue