Skip to main content
Top
Published in: Metallurgist 7-8/2022

30-11-2022

Investigation of Low-Carbon Pipeline Steel Weldability by Welding Thermal Cycle Simulation

Authors: L. I. Efron, P. P. Stepanov, S. V. Zharkov, A. V. Chastukhin

Published in: Metallurgist | Issue 7-8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Results are presented for a study of the weldability of a wide range of pipeline steels by a method of simulating welding thermal cycles. It is shown that the method of simulating the microstructure by exposing base metal to a welding thermal cycle using a Gleeble test complex can be considered as a universal method for assessing steel weldability. The method makes it possible to evaluate steel reaction to thermal action for various welding methods and regimes, and in particular to establish the microstructure and mechanical properties (hardness, toughness, crack resistance). Alongside precise reproduction of the welding thermal cycle for a given range of pipes and welding modes, Gleeble makes it possible to separate the effect of individual thermal cycle parameters on the microstructure and to establish a number of important features. Microstructural mechanisms that determine formation of the heat-affected zone metal properties are discussed. It is shown that during simulation it is important to provide an austenite grain size corresponding to an actual welded joint and the type (section) of the impact specimen, which will allow comparison of material and welding technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Seyffarth, Atlas Schweifl-ZTU-Schaubilder, Duesseldorf (Germany) (1982). P. Seyffarth, Atlas Schweifl-ZTU-Schaubilder, Duesseldorf (Germany) (1982).
2.
go back to reference F. Heisterkamp, H. Hulka, and D. Batte, Metallurgy Welding and Qualification of Microalloyed (HSLA) Steel Weldments, AWS, Miami (Fl) (1990). F. Heisterkamp, H. Hulka, and D. Batte, Metallurgy Welding and Qualification of Microalloyed (HSLA) Steel Weldments, AWS, Miami (Fl) (1990).
3.
go back to reference V. F. Grabin and A. V. Denisenko, Welding Materials Science for Low and Medium-Carbon Steels [in Russian], Naukova Dumka, Kiev (1978). V. F. Grabin and A. V. Denisenko, Welding Materials Science for Low and Medium-Carbon Steels [in Russian], Naukova Dumka, Kiev (1978).
4.
go back to reference I. Grivnyak, Steel Weldability [in Russian], Mashinostroenie, Moscow (1984). I. Grivnyak, Steel Weldability [in Russian], Mashinostroenie, Moscow (1984).
5.
go back to reference M. Kh. Shorshorov, Steel and Titanium Alloy Welding Materials Science [in Russian], Nauka, Moscow (1965). M. Kh. Shorshorov, Steel and Titanium Alloy Welding Materials Science [in Russian], Nauka, Moscow (1965).
6.
go back to reference I. L. Permyakov, I. I. Frantov, A. N. Bortsov, and K. Yu. Mentyukov, “Improvement of weldability and evaluation criteria for high-strength pipe steel zone near the weld reliability,” Metallurg, No. 12, 74–81 (2011). I. L. Permyakov, I. I. Frantov, A. N. Bortsov, and K. Yu. Mentyukov, “Improvement of weldability and evaluation criteria for high-strength pipe steel zone near the weld reliability,” Metallurg, No. 12, 74–81 (2011).
7.
go back to reference V. I. Stolyarov, S. A. Golovanenko, I. I. Frantov, and A. V. Terent’ev, “Improvement of welded joint properties for large diameter pipe by optimizing steel chemical composition,” Stal’, No. 5, 70–73 (1982). V. I. Stolyarov, S. A. Golovanenko, I. I. Frantov, and A. V. Terent’ev, “Improvement of welded joint properties for large diameter pipe by optimizing steel chemical composition,” Stal’, No. 5, 70–73 (1982).
8.
go back to reference I. I. Frantov, T. S. Kireeva, and V. I. Stolyarov, Steel Weldability Problems with Polymorphic Transformation, Coll. “Contemporary metallurgy problems [in Russian], Metallurgiya, Moscow (1983). I. I. Frantov, T. S. Kireeva, and V. I. Stolyarov, Steel Weldability Problems with Polymorphic Transformation, Coll. “Contemporary metallurgy problems [in Russian], Metallurgiya, Moscow (1983).
9.
go back to reference K. G. Vorkachev, P. P. Stepanov, L. I. Éfron, M M. Kantor, A. V. Chastukhin, and S. V. Zharkov, “Effect of microstructure on high-strength low-alloy steel welded joint toughness with simulation of a coarse grained region of the heat affected zone,” Metallurg, No. 9, 90–97 (2020). K. G. Vorkachev, P. P. Stepanov, L. I. Éfron, M M. Kantor, A. V. Chastukhin, and S. V. Zharkov, “Effect of microstructure on high-strength low-alloy steel welded joint toughness with simulation of a coarse grained region of the heat affected zone,” Metallurg, No. 9, 90–97 (2020).
10.
go back to reference I. I. Frantov, I. L. Permyakov, and A. N. Bortsov, “Austenite phase transformation kinetics in the zone near the weld and heat affected zone during welding low-alloy pipe steels,” Probl. Chern. Met. Materialoved., No. 3, 1–12 (2011). I. I. Frantov, I. L. Permyakov, and A. N. Bortsov, “Austenite phase transformation kinetics in the zone near the weld and heat affected zone during welding low-alloy pipe steels,” Probl. Chern. Met. Materialoved., No. 3, 1–12 (2011).
11.
go back to reference P. P. Stepanov, V. N. Zikeev, G. E. Khadeev, L. I. Éfron, and Yu. D. Morozov, “Improvement of steel weldability for thick-walled gas pipes of considerable diameter by optimizing chemical composition,” Metallurg, No. 11, 62–67 (2010). P. P. Stepanov, V. N. Zikeev, G. E. Khadeev, L. I. Éfron, and Yu. D. Morozov, “Improvement of steel weldability for thick-walled gas pipes of considerable diameter by optimizing chemical composition,” Metallurg, No. 11, 62–67 (2010).
12.
go back to reference D. A. Ringinen, A. V. Chastukhin, G. E. Khadeev, L. I. Éfron, and P. P. Stepanov, “Study of steel strength class Kh100 weldability,” Metallurg, No. 12, 68-74 (2013). D. A. Ringinen, A. V. Chastukhin, G. E. Khadeev, L. I. Éfron, and P. P. Stepanov, “Study of steel strength class Kh100 weldability,” Metallurg, No. 12, 68-74 (2013).
13.
go back to reference L. I. Éfron, Materials Science in “Large” Metallurgy. Pipe Steels [in Russian], Metallurgizdat, Moscow (2012). L. I. Éfron, Materials Science in “Large” Metallurgy. Pipe Steels [in Russian], Metallurgizdat, Moscow (2012).
14.
go back to reference V. I. Stolyarov, I. Yu. Pyshmintsev, A. A. Efimenko, O. Yu. Elagina, Yu. D. Morozov, A. V. Nazarov, and A. V. Vyshemirskii, High-strength steel weldability for gas pipelines of considerable diameter,” Probl. Chern. Met. Materialoved., No. 3, 39–47 (2008). V. I. Stolyarov, I. Yu. Pyshmintsev, A. A. Efimenko, O. Yu. Elagina, Yu. D. Morozov, A. V. Nazarov, and A. V. Vyshemirskii, High-strength steel weldability for gas pipelines of considerable diameter,” Probl. Chern. Met. Materialoved., No. 3, 39–47 (2008).
15.
go back to reference I. Yu. Utkin, Role of Microalloying Elements in Mechanical Property Formation in the Zone Around a Weld of Straight-Seam Pipes of Considerable Diameter of Strength Groups X70-X80 [in Russian], Author’s Abstr. Diss. Cand. Techn. Sci., Moscow (2916). I. Yu. Utkin, Role of Microalloying Elements in Mechanical Property Formation in the Zone Around a Weld of Straight-Seam Pipes of Considerable Diameter of Strength Groups X70-X80 [in Russian], Author’s Abstr. Diss. Cand. Techn. Sci., Moscow (2916).
16.
go back to reference A. A. Velichko, Role of Welding Heating Parameters in Forming the Morphology, Microstructure, and Properties of a Heat-Affected Zone During Straight Seam Pipe Production [in Russian], Author’s Abtsr. Diss. Cand. Techn. Sci., Moscow (2016). A. A. Velichko, Role of Welding Heating Parameters in Forming the Morphology, Microstructure, and Properties of a Heat-Affected Zone During Straight Seam Pipe Production [in Russian], Author’s Abtsr. Diss. Cand. Techn. Sci., Moscow (2016).
17.
go back to reference A. A. Velichko, V. V. Orlov, U. A Pazilova, R. V. Sulyagin, and E. I. Khlusova, “Optimization of the structure and properties of the welded joint heating zone for high-strength pipe steels,” Svaroch. Proizvod., No. 9, 8–13 (2014). A. A. Velichko, V. V. Orlov, U. A Pazilova, R. V. Sulyagin, and E. I. Khlusova, “Optimization of the structure and properties of the welded joint heating zone for high-strength pipe steels,” Svaroch. Proizvod., No. 9, 8–13 (2014).
18.
go back to reference I. I. Frantov, A. A. Velichko, A. N. Bortsov, and I. Yu. Utkin, “Weldability of niobium-containing high-strength steel for pipelines,” Welding J. USA, 93, No. 1, 23–29 (2014). I. I. Frantov, A. A. Velichko, A. N. Bortsov, and I. Yu. Utkin, “Weldability of niobium-containing high-strength steel for pipelines,” Welding J. USA, 93, No. 1, 23–29 (2014).
19.
go back to reference A. V. Nazarov, E. V. Yakushev, I. P. Shabalov, Yu. D. Morozov, and T. S. Kireeva, “Comparison of the weldability of high-strength pipe steels microalloyed with niobium and vanadium,” Metallurg, No. 10, 56-61 (2013). A. V. Nazarov, E. V. Yakushev, I. P. Shabalov, Yu. D. Morozov, and T. S. Kireeva, “Comparison of the weldability of high-strength pipe steels microalloyed with niobium and vanadium,” Metallurg, No. 10, 56-61 (2013).
20.
go back to reference A. Yu. Ivanov, R. V. Sulyagin, V. V. Orlov, and A. A. Kruglova, “Structuer formation in the heat-affected zone and welded joint properties of pipe steels of strength classes X80-X90,” MiTOM, No. 11 (677), 46–53 (2011). A. Yu. Ivanov, R. V. Sulyagin, V. V. Orlov, and A. A. Kruglova, “Structuer formation in the heat-affected zone and welded joint properties of pipe steels of strength classes X80-X90,” MiTOM, No. 11 (677), 46–53 (2011).
21.
go back to reference A. Yu. Ivanov, R. V. Sulyagin, G. G. Motovilina, and E. I. Khlusova, “Structure and properties of the heat-affected zone of steels of strength class X80 during welding with different linear energy,” Metallurg, No. 6, 58–64 (2011). A. Yu. Ivanov, R. V. Sulyagin, G. G. Motovilina, and E. I. Khlusova, “Structure and properties of the heat-affected zone of steels of strength class X80 during welding with different linear energy,” Metallurg, No. 6, 58–64 (2011).
22.
go back to reference L. A. Efimenko, D. V. Ponomarenko, R. U. Utkin, and R. O. Ramus’, “Study of the effect fo tendency towards austenite grain growth on welded joint ZNS impact strength of low-carbon and low-alloy steels,” Metallurg, No. 4, 62–65 (2020). L. A. Efimenko, D. V. Ponomarenko, R. U. Utkin, and R. O. Ramus’, “Study of the effect fo tendency towards austenite grain growth on welded joint ZNS impact strength of low-carbon and low-alloy steels,” Metallurg, No. 4, 62–65 (2020).
23.
go back to reference J. G. Garland and P. R. Kirkwood, “Towards improved Submerged arc weld metal,” Metal Contsr., No. 5, 275–283; No. 6., 230–330 (1975). J. G. Garland and P. R. Kirkwood, “Towards improved Submerged arc weld metal,” Metal Contsr., No. 5, 275–283; No. 6., 230–330 (1975).
24.
go back to reference S. I. Kuchuk-Yatsenko, G. M. Grigorenko, D. P. Novikova, et al., “Effect of energy input on ductility properties of steel X80 joints with contact butt welding,” Avtomat Svarka, No. 6, 5–10 (2007). S. I. Kuchuk-Yatsenko, G. M. Grigorenko, D. P. Novikova, et al., “Effect of energy input on ductility properties of steel X80 joints with contact butt welding,” Avtomat Svarka, No. 6, 5–10 (2007).
25.
go back to reference V. A Kostin, G. M. Grigorenko, V. D. Pozdnyakov, et al., “Effect of welding thermal cycle on structure and properties of low-alloy structural steels,” Avtomat Svarka, No. 12, 10–16 (2012). V. A Kostin, G. M. Grigorenko, V. D. Pozdnyakov, et al., “Effect of welding thermal cycle on structure and properties of low-alloy structural steels,” Avtomat Svarka, No. 12, 10–16 (2012).
26.
go back to reference W. W. Xu, Q. F. Wang, T. Pan, et al., “Effect of welding heat input on simulated HAZ microstructure and toughness of a V–N microalloyed steel,” in: Proc. of Sino-Swedish Structural Materials Symposium (2007), pp. 234–239. W. W. Xu, Q. F. Wang, T. Pan, et al., “Effect of welding heat input on simulated HAZ microstructure and toughness of a V–N microalloyed steel,” in: Proc. of Sino-Swedish Structural Materials Symposium (2007), pp. 234–239.
27.
go back to reference I. I. Frantov, T. S. Kireeva, V. I. Stolyarov, A. V. Nazarov, and A. G. Zakurdaev, “Effect of alloying on pipe steel properties and their weldability problems,” Stal’, No. 11, 68–72 (1986). I. I. Frantov, T. S. Kireeva, V. I. Stolyarov, A. V. Nazarov, and A. G. Zakurdaev, “Effect of alloying on pipe steel properties and their weldability problems,” Stal’, No. 11, 68–72 (1986).
28.
go back to reference V. V. Sud’in, P. P. Stepanov, V. A. Bozhenov, M. M. Kantor, L. I. Éfron, S. V. Zharkov, A. V. Chastukhin, and A. A. Ringinen, “Microstructural features of low-carbon pipe steels governing impact strength around a welded joint zone,” Metallurg, No. 5, 24–35 (2021). V. V. Sud’in, P. P. Stepanov, V. A. Bozhenov, M. M. Kantor, L. I. Éfron, S. V. Zharkov, A. V. Chastukhin, and A. A. Ringinen, “Microstructural features of low-carbon pipe steels governing impact strength around a welded joint zone,” Metallurg, No. 5, 24–35 (2021).
29.
go back to reference V. V. Sud’in, P. P. Stepanov, M. M. Kantor, L. I. Éfron, K. G. Vorkachev, and S. V. Zharkov, “Comparative effect of microstructural factors on impact strength of the zone near a weld for pipes of strength class K60,” Stal’, No. 1, 44–50 (2022). V. V. Sud’in, P. P. Stepanov, M. M. Kantor, L. I. Éfron, K. G. Vorkachev, and S. V. Zharkov, “Comparative effect of microstructural factors on impact strength of the zone near a weld for pipes of strength class K60,” Stal’, No. 1, 44–50 (2022).
30.
go back to reference P. Mohseni, J. K. Solberg, M. Karlsen, O. M. Akselsen, and E. Østby, “Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel,” Materials Science and Technology, 28, Nо. 11, 1261–1268 (2012). P. Mohseni, J. K. Solberg, M. Karlsen, O. M. Akselsen, and E. Østby, “Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel,” Materials Science and Technology, 28, Nо. 11, 1261–1268 (2012).
31.
go back to reference Chen Cuixin, Li Wushen, and Peng Huifen, “Investigation on M-A constituent in weld CGHAZ of high-strength microalloyed steel,” Materials Science Forum, 575–578, 690–695 (2008). Chen Cuixin, Li Wushen, and Peng Huifen, “Investigation on M-A constituent in weld CGHAZ of high-strength microalloyed steel,” Materials Science Forum, 575–578, 690–695 (2008).
32.
go back to reference S. Aihara, Intel. Conf. on the Metallurgy Welding and Qualification of Microalloyed (HSLA) Steel Weldments, Houston, Texas, USA, Nov. 6–8 (1990). S. Aihara, Intel. Conf. on the Metallurgy Welding and Qualification of Microalloyed (HSLA) Steel Weldments, Houston, Texas, USA, Nov. 6–8 (1990).
33.
go back to reference X. Wang, Z. Wang, Z. Xie, X. Ma, S. Subramanian, C. Shang, X. Li, and J. Wang, “Combined effect of M/A constituent and grain boundary on the impact toughness of CGHAZ and ICCGHAZ of E550 grade offshore engineering steel,” Math. Biosci. Eng., 16, No. 6, 7494–7509 (2019).CrossRef X. Wang, Z. Wang, Z. Xie, X. Ma, S. Subramanian, C. Shang, X. Li, and J. Wang, “Combined effect of M/A constituent and grain boundary on the impact toughness of CGHAZ and ICCGHAZ of E550 grade offshore engineering steel,” Math. Biosci. Eng., 16, No. 6, 7494–7509 (2019).CrossRef
34.
go back to reference X. Wang, Y. Tsai, J. Yang, et al., “Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550 MPa-grade offshore engineering steel,” Weld. World, 61, 1155–1168 (2017).CrossRef X. Wang, Y. Tsai, J. Yang, et al., “Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550 MPa-grade offshore engineering steel,” Weld. World, 61, 1155–1168 (2017).CrossRef
35.
go back to reference Y. Peng, Y. Zhang, L. Zhao, C. Ma, and Z. Tian, “Effect of heat input and heat treatment on microstructure and mechanical properties of welded joint of TMCP890 steel,” Weld World, 62, 961–971 (2018).CrossRef Y. Peng, Y. Zhang, L. Zhao, C. Ma, and Z. Tian, “Effect of heat input and heat treatment on microstructure and mechanical properties of welded joint of TMCP890 steel,” Weld World, 62, 961–971 (2018).CrossRef
Metadata
Title
Investigation of Low-Carbon Pipeline Steel Weldability by Welding Thermal Cycle Simulation
Authors
L. I. Efron
P. P. Stepanov
S. V. Zharkov
A. V. Chastukhin
Publication date
30-11-2022
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01403-1

Other articles of this Issue 7-8/2022

Metallurgist 7-8/2022 Go to the issue

Premium Partners