Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2022

22-11-2021

Investigation of Mechanical and Wear Characteristics of Forged Fe-Al-C Intermetallic Quaternary Alloyed with Zr/Ti

Authors: Ravi Kant, U. Batra, U. Prakash

Published in: Journal of Materials Engineering and Performance | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work aims to investigate the effect of hot forging on wear characteristics of Fe-22Al-1.0C intermetallic quaternary alloyed with Zr/Ti (5.0 wt.%) produced by arc melting. The samples were subjected to multidirectional hot forging at 1150 °C at a strain rate of 0.1 s−1. Hardness, elastic modulus, and compressive strength showed an improvement in hardness and compressive strength of hot-forged samples. A dry sliding wear test was performed using a ball-on-disk at a load of 10 N, with the sliding distance of 252 m at 0.21 m s−1. The microstructural studies reveal that forged samples have more uniform distribution of fine particles with dense dislocation network compared to the as-cast. This attributed to improvement in hardness, elastic modulus, and compressive strength of forged samples. A substantial decrease in the wear rate and friction coefficient was observed in the forged sample as compared to as-cast. Microstructural observations of worn surfaces reveal that the surface exhibited plastic deformation, delamination, microplowing, and wear debris along the sliding direction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference U. Prakash and G. Sauthoff, Machinable Iron Aluminides Containing Carbon, Scripta Mater., 2001, 44, p 73–78. CrossRef U. Prakash and G. Sauthoff, Machinable Iron Aluminides Containing Carbon, Scripta Mater., 2001, 44, p 73–78. CrossRef
2.
go back to reference Y. Deng, T. Hajilou and A. Barnoush, Hydrogen-Enhanced Cracking Revealed by In Situ Microcantilever Bending Test Inside Environmental Scanning Electron Microscope, Philos. Trans. A Math. Phys. Eng. Sci., 2017, 375, p 20170106. Y. Deng, T. Hajilou and A. Barnoush, Hydrogen-Enhanced Cracking Revealed by In Situ Microcantilever Bending Test Inside Environmental Scanning Electron Microscope, Philos. Trans. A Math. Phys. Eng. Sci., 2017, 375, p 20170106.
3.
go back to reference U. Prakash, Development of Iron Aluminides Containing Carbon, Trans. Ind. Inst. Met., 2008, 61, p 193–199.CrossRef U. Prakash, Development of Iron Aluminides Containing Carbon, Trans. Ind. Inst. Met., 2008, 61, p 193–199.CrossRef
4.
go back to reference S. Khaple, D.V.V. Satyanarayana, V.V.S. Prasad and B.R. Golla, Evolution of Microstructure with Increasing Carbon Content and Its Effect on Mechanical Properties of Disordered Iron–Aluminium Alloy, Bull. Mater. Sci., 2019, 42, p 234.CrossRef S. Khaple, D.V.V. Satyanarayana, V.V.S. Prasad and B.R. Golla, Evolution of Microstructure with Increasing Carbon Content and Its Effect on Mechanical Properties of Disordered Iron–Aluminium Alloy, Bull. Mater. Sci., 2019, 42, p 234.CrossRef
5.
go back to reference M. Yildirim, M. Vedat Akdeniz and A.O. Mekhrabov, Microstructural Evolution and Room Temperature Mechanical Properties of As-Cast and Heat-Treated Fe50Al50-nNbn Alloys (n = 1, 3, 5, 7, and 9 at.%), Mater. Sci. Eng. A, 2016, 664, p 17–25.CrossRef M. Yildirim, M. Vedat Akdeniz and A.O. Mekhrabov, Microstructural Evolution and Room Temperature Mechanical Properties of As-Cast and Heat-Treated Fe50Al50-nNbn Alloys (n = 1, 3, 5, 7, and 9 at.%), Mater. Sci. Eng. A, 2016, 664, p 17–25.CrossRef
6.
go back to reference P. Kratochvíl, M. Svec, R. Kral, J. Vesely, P. Lukac and T. Vlasak, The Effect of Nb Addition on the Microstructure and the High-Temperature Strength of Fe3Al Aluminide, Metal. Mater. Trans. A, 2018, 49, p 1598–1603.CrossRef P. Kratochvíl, M. Svec, R. Kral, J. Vesely, P. Lukac and T. Vlasak, The Effect of Nb Addition on the Microstructure and the High-Temperature Strength of Fe3Al Aluminide, Metal. Mater. Trans. A, 2018, 49, p 1598–1603.CrossRef
7.
go back to reference A. Radhakrishna, R.G. Baligidad and D.G. Sarma, Effect of Carbon on Structure and Properties of FeAl Based Intermetallic Alloy, Scripta Mater., 2001, 45, p 1077–1082.CrossRef A. Radhakrishna, R.G. Baligidad and D.G. Sarma, Effect of Carbon on Structure and Properties of FeAl Based Intermetallic Alloy, Scripta Mater., 2001, 45, p 1077–1082.CrossRef
8.
go back to reference R. Kant, U. Prakash, V. Agarwala and V.V.S. Prasad, Effect of Carbon and Titanium Additions on Mechanical Properties of B2 FeAl, Trans. Indian Inst. Met., 2016, 69, p 845–850.CrossRef R. Kant, U. Prakash, V. Agarwala and V.V.S. Prasad, Effect of Carbon and Titanium Additions on Mechanical Properties of B2 FeAl, Trans. Indian Inst. Met., 2016, 69, p 845–850.CrossRef
9.
go back to reference X. Zhang, J. Ma, L. Fu, S. Zhu, F. Li, J. Yang and W. Liu, High Temperature Wear Resistance of Fe–28Al–5Cr Alloy and Its Composites Reinforced by TiC, Tribol. Int., 2013, 61, p 48–55.CrossRef X. Zhang, J. Ma, L. Fu, S. Zhu, F. Li, J. Yang and W. Liu, High Temperature Wear Resistance of Fe–28Al–5Cr Alloy and Its Composites Reinforced by TiC, Tribol. Int., 2013, 61, p 48–55.CrossRef
10.
go back to reference P. Prokopcakova, M. Svec and M. Palm, Microstructural evolution and Creep of Fe–Al–Ta Alloys, Int. J. Mater. Res., 2016, 107, p 396–405.CrossRef P. Prokopcakova, M. Svec and M. Palm, Microstructural evolution and Creep of Fe–Al–Ta Alloys, Int. J. Mater. Res., 2016, 107, p 396–405.CrossRef
11.
go back to reference Y. Liu, J. Cheng, B. Yin, S. Zhu, Z. Qiao and J. Yang, Study of the Tribological Behaviors and Wear Mechanisms of WC-Co and WC-Fe3Al Hard Materials Under Dry Sliding Condition, Tribol. Int., 2017, 109, p 19–25.CrossRef Y. Liu, J. Cheng, B. Yin, S. Zhu, Z. Qiao and J. Yang, Study of the Tribological Behaviors and Wear Mechanisms of WC-Co and WC-Fe3Al Hard Materials Under Dry Sliding Condition, Tribol. Int., 2017, 109, p 19–25.CrossRef
12.
go back to reference P. Novak and K. Nova, Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics, Materials, 2019, 12, p 1748–1761.CrossRef P. Novak and K. Nova, Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics, Materials, 2019, 12, p 1748–1761.CrossRef
13.
go back to reference M. Zamanzade, A. Barnoush and C. Motz, A Review on the Properties of Iron Aluminide Intermetallics, Crystal, 2016, 6, p 10–39.CrossRef M. Zamanzade, A. Barnoush and C. Motz, A Review on the Properties of Iron Aluminide Intermetallics, Crystal, 2016, 6, p 10–39.CrossRef
14.
go back to reference R. Kant, U. Prakash, V. Agarwala and V.V.S. Prasad, Microstructure and Wear Behaviour of FeAl Based Composites Containing In-Situ Carbides, Bull. Mater. Sci., 2016, 39, p 1827–1834.CrossRef R. Kant, U. Prakash, V. Agarwala and V.V.S. Prasad, Microstructure and Wear Behaviour of FeAl Based Composites Containing In-Situ Carbides, Bull. Mater. Sci., 2016, 39, p 1827–1834.CrossRef
15.
go back to reference D.D. Risanti and G. Sauthoff, Strengthening of Iron Aluminide Alloys by Atomic Ordering and Laves Phase Precipitation for High Temperature Applications, Intermetallics, 2005, 13, p 1313–1321.CrossRef D.D. Risanti and G. Sauthoff, Strengthening of Iron Aluminide Alloys by Atomic Ordering and Laves Phase Precipitation for High Temperature Applications, Intermetallics, 2005, 13, p 1313–1321.CrossRef
16.
go back to reference P.V. Durga, K.S. Prasad, S.B. Chandrasekhar, A.V. Reddy, S.R. Bakshi and R. Vijay, Microstructural and Mechanical Properties of Oxide Dispersion Strengthened Iron Aluminides Produced by Mechanical Milling and Hot Extrusion, J. Alloys Comp., 2020, 834, p 155218.CrossRef P.V. Durga, K.S. Prasad, S.B. Chandrasekhar, A.V. Reddy, S.R. Bakshi and R. Vijay, Microstructural and Mechanical Properties of Oxide Dispersion Strengthened Iron Aluminides Produced by Mechanical Milling and Hot Extrusion, J. Alloys Comp., 2020, 834, p 155218.CrossRef
17.
go back to reference R. Lyszkowski, T. Czujko and R.A. Varin, Multi-Axial Forging of Fe3Al-Base Intermetallic Alloy and Its Mechanical Properties, J. Mater. Sci., 2017, 52, p 2902–2914.CrossRef R. Lyszkowski, T. Czujko and R.A. Varin, Multi-Axial Forging of Fe3Al-Base Intermetallic Alloy and Its Mechanical Properties, J. Mater. Sci., 2017, 52, p 2902–2914.CrossRef
18.
go back to reference M.S. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, A.O. Mosleh, W.S. Abu Shanab and V.K. Portnoy, Effect of Multidirectional Forging on the Grain Structure and Mechanical Properties of the Al–Mg–Mn Alloy, Materials, 2018, 11, p 2166.CrossRef M.S. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, A.O. Mosleh, W.S. Abu Shanab and V.K. Portnoy, Effect of Multidirectional Forging on the Grain Structure and Mechanical Properties of the Al–Mg–Mn Alloy, Materials, 2018, 11, p 2166.CrossRef
19.
go back to reference D.G. Morris, I. Gutierrez-Urrutia and M.A. Munoz-Morris, Evolution of Microstructure of an Iron Aluminide During Severe Plastic Deformation by Heavy Rolling, J. Mater Sci., 2008, 43, p 7438–7444.CrossRef D.G. Morris, I. Gutierrez-Urrutia and M.A. Munoz-Morris, Evolution of Microstructure of an Iron Aluminide During Severe Plastic Deformation by Heavy Rolling, J. Mater Sci., 2008, 43, p 7438–7444.CrossRef
20.
go back to reference D.G. Morris and M.A. Muñoz-Morris, Refinement of Second Phase Dispersions in Iron Aluminide Intermetallics by High-Temperature Severe Plastic Deformation, Intermetallics, 2012, 23, p 169–176.CrossRef D.G. Morris and M.A. Muñoz-Morris, Refinement of Second Phase Dispersions in Iron Aluminide Intermetallics by High-Temperature Severe Plastic Deformation, Intermetallics, 2012, 23, p 169–176.CrossRef
21.
go back to reference D.G. Morris and M.A. Munoz-Morris, High Creep Strength, Dispersion-Strengthened Iron Aluminide Prepared by Multidirectional High-Strain Forging, Acta Mater., 2010, 58, p 6080–6089.CrossRef D.G. Morris and M.A. Munoz-Morris, High Creep Strength, Dispersion-Strengthened Iron Aluminide Prepared by Multidirectional High-Strain Forging, Acta Mater., 2010, 58, p 6080–6089.CrossRef
22.
go back to reference R. Zhang, D. Wang and S. Yuan, Effect of Multi-directional Forging on the Microstructure and Mechanical Properties of TiBw/TA15 Composite with Network Architecture, Mater. Des., 2017, 134, p 250–258.CrossRef R. Zhang, D. Wang and S. Yuan, Effect of Multi-directional Forging on the Microstructure and Mechanical Properties of TiBw/TA15 Composite with Network Architecture, Mater. Des., 2017, 134, p 250–258.CrossRef
23.
go back to reference Y. Zeng, Y. Chao, Z. Luo, Y. Cai and R. Song, Effect of Multidirectional Forging and Heat Treatment on Mechanical Properties of In Situ ZrB2p/6061Al Composites, High Temp. Mater. Proc., 2018, 37, p 603–612.CrossRef Y. Zeng, Y. Chao, Z. Luo, Y. Cai and R. Song, Effect of Multidirectional Forging and Heat Treatment on Mechanical Properties of In Situ ZrB2p/6061Al Composites, High Temp. Mater. Proc., 2018, 37, p 603–612.CrossRef
24.
go back to reference A. Bachmaier, A. Hohenwarter and R. Pippan, New Procedure to Generate Stable Nanocrystallites by Severe Plastic Deformation, Scripta Mater., 2009, 61, p 1016–1019.CrossRef A. Bachmaier, A. Hohenwarter and R. Pippan, New Procedure to Generate Stable Nanocrystallites by Severe Plastic Deformation, Scripta Mater., 2009, 61, p 1016–1019.CrossRef
25.
go back to reference M. Rajabi, M. Shahmiri and M. Ghanbari, The Influence of B and Zr Additions on Microstructure, Mechanical Properties and Oxidation Behavior of Cast Ternary Fe–Al–Cr Alloys, Mater. Res. Express, 2019, 6, p 0865. M. Rajabi, M. Shahmiri and M. Ghanbari, The Influence of B and Zr Additions on Microstructure, Mechanical Properties and Oxidation Behavior of Cast Ternary Fe–Al–Cr Alloys, Mater. Res. Express, 2019, 6, p 0865.
26.
go back to reference L. Pang and K.S. Kumar, Effect of Het Treatment on the Microstructure of an Fe-40Al—0.7C-0.5B Alloy, Mater. Sci. Eng. A, 1998, 258, p 161–166.CrossRef L. Pang and K.S. Kumar, Effect of Het Treatment on the Microstructure of an Fe-40Al—0.7C-0.5B Alloy, Mater. Sci. Eng. A, 1998, 258, p 161–166.CrossRef
27.
go back to reference J. Pesicka, R. Kuzel, A. Dronhofer and G. Eggeler, The Evolution of Dislocation Density During Heat Treatment and Creep of Tempered Martensite Ferritic Steels, Acta Mater., 2003, 51, p 4847–4862.CrossRef J. Pesicka, R. Kuzel, A. Dronhofer and G. Eggeler, The Evolution of Dislocation Density During Heat Treatment and Creep of Tempered Martensite Ferritic Steels, Acta Mater., 2003, 51, p 4847–4862.CrossRef
28.
go back to reference M.H. Loretto, Electron Beam Analysis of Materials, Chapman and Hall, London, 1984, p 97–100CrossRef M.H. Loretto, Electron Beam Analysis of Materials, Chapman and Hall, London, 1984, p 97–100CrossRef
29.
go back to reference M.Q. Li, H.X. Zhai, Z.Y. Huang, X.H. Liu, Y. Zhou, S.B. Li and C.W. Li, Tensile Behavior and Strengthening Mechanism in Ultrafine TiC0.5 Particle Reinforced Cu-Al Matrix Composites, J. Alloys Compd., 2015, 628, p 186–194.CrossRef M.Q. Li, H.X. Zhai, Z.Y. Huang, X.H. Liu, Y. Zhou, S.B. Li and C.W. Li, Tensile Behavior and Strengthening Mechanism in Ultrafine TiC0.5 Particle Reinforced Cu-Al Matrix Composites, J. Alloys Compd., 2015, 628, p 186–194.CrossRef
30.
go back to reference A. Bisht, M. Srivastava, R. Manoj Kumar, I. Lahiri and D. Lahiri, Strengthening Mechanism in Graphene Nanoplatelets Reinforced Aluminum Composite Fabricated Through Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 695, p 20–28.CrossRef A. Bisht, M. Srivastava, R. Manoj Kumar, I. Lahiri and D. Lahiri, Strengthening Mechanism in Graphene Nanoplatelets Reinforced Aluminum Composite Fabricated Through Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 695, p 20–28.CrossRef
31.
go back to reference J.G. Park, D.H. Keum and Y.H. Lee, Strengthening Mechanisms in Carbon Nanotube-Reinforced Aluminum Composites, Carbon, 2015, 95, p 690–698.CrossRef J.G. Park, D.H. Keum and Y.H. Lee, Strengthening Mechanisms in Carbon Nanotube-Reinforced Aluminum Composites, Carbon, 2015, 95, p 690–698.CrossRef
32.
go back to reference A. Amiriyan, C. Blais, S. Savoie, R. Schulz, M. Gariépy and H.D. Alamdari, Mechanical Behavior and Sliding Wear Studies on Iron Aluminide Coatings Reinforced with Titanium Carbide, Metals, 2017, 7, p 177–189.CrossRef A. Amiriyan, C. Blais, S. Savoie, R. Schulz, M. Gariépy and H.D. Alamdari, Mechanical Behavior and Sliding Wear Studies on Iron Aluminide Coatings Reinforced with Titanium Carbide, Metals, 2017, 7, p 177–189.CrossRef
33.
go back to reference J.F. Archard, Contact and Rubbing of flat Surfaces, J. Appl. Phys., 1953, 4, p 981–988.CrossRef J.F. Archard, Contact and Rubbing of flat Surfaces, J. Appl. Phys., 1953, 4, p 981–988.CrossRef
34.
go back to reference Y.R. Liu, Effects of Aging on Shape Memory and Wear Resistance of a Fe–Mn–Si-Based Alloy, J. Mater. Res., 2014, 29, p 2809–2816.CrossRef Y.R. Liu, Effects of Aging on Shape Memory and Wear Resistance of a Fe–Mn–Si-Based Alloy, J. Mater. Res., 2014, 29, p 2809–2816.CrossRef
Metadata
Title
Investigation of Mechanical and Wear Characteristics of Forged Fe-Al-C Intermetallic Quaternary Alloyed with Zr/Ti
Authors
Ravi Kant
U. Batra
U. Prakash
Publication date
22-11-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06424-6

Other articles of this Issue 4/2022

Journal of Materials Engineering and Performance 4/2022 Go to the issue

Premium Partners