Skip to main content
Top
Published in:

28-07-2023

Investigation of Metal Structure Formation During Ingotless Rolling-Extrusion of Aluminum and Its Alloys

Authors: S. B. Sidel’nikov, E. S. Lopatina, I. L. Konstantinov, D. S. Voroshilov, Y. N. Mansurov, V. M. Bespalov, N. A. Terentev

Published in: Metallurgist | Issue 3-4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Results are given for studies of the structure and properties of semi-finished products made of aluminum and alloys of the Al-REM system, prepared using ingotless rolling-extrusion and equal-channel angular extrusion. It is established that rods obtained by high-speed crystallization-deformation technology using the method of ingotless rolling-extrusion have a stable ultrafine subgrain structure, which makes it possible to use deformed semi-finished products from them as modifier rods and electrical wire for cable products. Experimental studies are conducted confirming the assumption that the initial structure of a modifying rod has an effect on the melt. At the same time, it is found that sizes and distribution density of additional cluster-based crystallization centers formed within the melt volume are inherited from the initial subgrain structure of the modifying rod made of aluminum or its alloys. At the same time, it is found that the introduction of 3–4% of such a master alloy rod with a diameter of 8–9 mm into a crystallizing aluminum ingot at a melt temperature of 700–720°C and a melt standing time of at least 5 minutes provides a stable modifying effect. Production parameters for manufacture of bars from aluminum alloys by the ingotless rolling-extrusion method are established: melt temperature 720°C; degree of deformation during rolling is not less than 50%, roll rotational speed is 8 rpm. Metallographic studies also show that subsequent severe plastic deformation by equal-channel angular extrusion of bars prepared by ingotless rolling-extrusion from an experimental alloy of the composition Al–0.2Zr–0.2Fe–0.4Mg makes it possible to achieve additional metal hardening due to grain size and structure refinement. and to obtain wire for electrical purposes with a high level of physical and mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yu. A. Gorbunov, “Development of rolled and cabling wiring production from aluminum alloys at plants in Russia,” J. Siberian Federal University. Engineering & Technologies, 8, No. 7, 938–946 (2014). Yu. A. Gorbunov, “Development of rolled and cabling wiring production from aluminum alloys at plants in Russia,” J. Siberian Federal University. Engineering & Technologies, 8, No. 7, 938–946 (2014).
2.
go back to reference V. Yu. Bazhin and M. V. Baranov, “Aluminum strip formation with ingotless rolling,” Rasplavy, No. 4, 33–41 (2005).. V. Yu. Bazhin and M. V. Baranov, “Aluminum strip formation with ingotless rolling,” Rasplavy, No. 4, 33–41 (2005)..
3.
go back to reference G. S. Makarov, Aluminum Alloy Ingots with Magnesium and Silicon for Extrusion. Production Bases [in Russian], Intermet Engineering, Moscow (2011). G. S. Makarov, Aluminum Alloy Ingots with Magnesium and Silicon for Extrusion. Production Bases [in Russian], Intermet Engineering, Moscow (2011).
4.
go back to reference B. Amulya, D. Satyabrat, B. Bharat, and P. Nedumbilly, “Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy,” J. Mater. Res. Technol., 4, 171–179 (2015).CrossRef B. Amulya, D. Satyabrat, B. Bharat, and P. Nedumbilly, “Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy,” J. Mater. Res. Technol., 4, 171–179 (2015).CrossRef
5.
go back to reference M. M. Antonov, N. V. Okladnikova, Yu. A. Gorbunov, V. P. Zhereb, et al., “Effect of modification on structure and properties of wrought alloys of the system Al–Mg–Si,” J. Siberian Federal University. Engineering & Technologies, 8, No. 5, 601–608 (2015).CrossRef M. M. Antonov, N. V. Okladnikova, Yu. A. Gorbunov, V. P. Zhereb, et al., “Effect of modification on structure and properties of wrought alloys of the system Al–Mg–Si,” J. Siberian Federal University. Engineering & Technologies, 8, No. 5, 601–608 (2015).CrossRef
6.
go back to reference V. I. Nikitin, Inheritance in Cast Alloys [in Russian], SamGTU, Samara (1995). V. I. Nikitin, Inheritance in Cast Alloys [in Russian], SamGTU, Samara (1995).
7.
go back to reference V. I. Nikitin, Inheritance in Cast Alloys: Teaching Aid [in Russian], SamGTU, Samara (2015). V. I. Nikitin, Inheritance in Cast Alloys: Teaching Aid [in Russian], SamGTU, Samara (2015).
8.
go back to reference V. I. Nikitoin and K. V. Nikitin, “Problem of inheritance of charge materials in technology of light alloys: history, state, prospects,” Tekhnol. Legkikh. Splavov, No. 2, 21–32 (2020). V. I. Nikitoin and K. V. Nikitin, “Problem of inheritance of charge materials in technology of light alloys: history, state, prospects,” Tekhnol. Legkikh. Splavov, No. 2, 21–32 (2020).
9.
go back to reference D. Eskin and Feng Wang, “Joint effect of ultrasonic vibrations and solid metal addition on the grain refinement of an aluminium alloy,” Metals, 9, No. 161, 1–8 (2019). D. Eskin and Feng Wang, “Joint effect of ultrasonic vibrations and solid metal addition on the grain refinement of an aluminium alloy,” Metals, 9, No. 161, 1–8 (2019).
10.
go back to reference G. G. Krushenko, V. P. Nazarov, and M. V. Rezanova, “Use of nanopowder technology during preparation of aluminum alloy transport media components,” Vestn. SibGAU, 16, No.1 233–240. G. G. Krushenko, V. P. Nazarov, and M. V. Rezanova, “Use of nanopowder technology during preparation of aluminum alloy transport media components,” Vestn. SibGAU, 16, No.1 233–240.
11.
go back to reference G. G. Krushenko, S. N. Reshetnikova, and V. V. Golovanova, “Strengthening the nanomodification effect of aluminum alloys with ultrasound,” in: Reshet. Chteniya (2017), pp. 622–623. G. G. Krushenko, S. N. Reshetnikova, and V. V. Golovanova, “Strengthening the nanomodification effect of aluminum alloys with ultrasound,” in: Reshet. Chteniya (2017), pp. 622–623.
12.
go back to reference V. P. Severdenko, N. V. Shepel’skii, and V. M. Fedorov, Rapidly Crystallized Aluminum Alloys [in Russian], Metallurgiya, Moscow (1980). V. P. Severdenko, N. V. Shepel’skii, and V. M. Fedorov, Rapidly Crystallized Aluminum Alloys [in Russian], Metallurgiya, Moscow (1980).
13.
go back to reference V. I. Dobatkin, V. I. Elagin, and V. M. Fedorov, Rapidly Crystallizing Aluminum Alloys [in Russian], VILS, Moscow (1995). V. I. Dobatkin, V. I. Elagin, and V. M. Fedorov, Rapidly Crystallizing Aluminum Alloys [in Russian], VILS, Moscow (1995).
14.
go back to reference V. I. Dobatkin, V. Yu. Konkevich, S. L. Nikitin, and S. Ya. Betsofen, “Study of the effect of basic components and transition metals on the structure and properties of rapidly crystallizing high-strength aluminum alloys of the Al–Zn–Mg–Cu system,” Metally, No. 1, 93–98 (2012). V. I. Dobatkin, V. Yu. Konkevich, S. L. Nikitin, and S. Ya. Betsofen, “Study of the effect of basic components and transition metals on the structure and properties of rapidly crystallizing high-strength aluminum alloys of the Al–Zn–Mg–Cu system,” Metally, No. 1, 93–98 (2012).
15.
go back to reference E. I. Kurbatkina, N. A. Belov, and M. V. Gorshenkov, “Structure and phase composition of composite granules based upon thermally stable aluminum alloys ALTÉK with boron-containing filler,” Izv. Vuzov. Poroshk. Metall. Funkts, Pokryt., No. 3, 33–36 (2012). E. I. Kurbatkina, N. A. Belov, and M. V. Gorshenkov, “Structure and phase composition of composite granules based upon thermally stable aluminum alloys ALTÉK with boron-containing filler,” Izv. Vuzov. Poroshk. Metall. Funkts, Pokryt., No. 3, 33–36 (2012).
16.
go back to reference M. V. Pervukhin, D. K. Figurovskii, E. A. Golovenko, N. V. Sergeev, and M. Yu. Khatsayuk, “Rapid crystallization of highly alloyed aluminum alloys in an electromagnetic field,” Izv. Vuzov Severo-Kazkaz. Region. Tekhn. Nauk., No. 2, 47–51 (2011). M. V. Pervukhin, D. K. Figurovskii, E. A. Golovenko, N. V. Sergeev, and M. Yu. Khatsayuk, “Rapid crystallization of highly alloyed aluminum alloys in an electromagnetic field,” Izv. Vuzov Severo-Kazkaz. Region. Tekhn. Nauk., No. 2, 47–51 (2011).
17.
go back to reference M. V. Pervukhin, V. N. Timofeev, R. M. Khristinich, et al., RF Patent 48836 on a Useful Model. Device for Continuous Ingot Casting in an Electromagnetic Field. Publ. 11.10.2005. M. V. Pervukhin, V. N. Timofeev, R. M. Khristinich, et al., RF Patent 48836 on a Useful Model. Device for Continuous Ingot Casting in an Electromagnetic Field. Publ. 11.10.2005.
18.
go back to reference S. B. Sidel’nikov, E. S. Lopatina, N. N. Dovzhenko, T. N. Drozdova, et al., Features of Metal Structure Formation and Properties During High-Speed Crystallization-Deformation and Modification of Aluminum Alloys: Monograph [in Russian], Sib. Fed. Univ., Krasnoyarsk (2015). S. B. Sidel’nikov, E. S. Lopatina, N. N. Dovzhenko, T. N. Drozdova, et al., Features of Metal Structure Formation and Properties During High-Speed Crystallization-Deformation and Modification of Aluminum Alloys: Monograph [in Russian], Sib. Fed. Univ., Krasnoyarsk (2015).
19.
go back to reference S. B. Sidel’nikov, A. A. Strartsev, T. R. Gil’manshina, et al., RF Patent 2724758. Device for Ingotless Metal Rolling and Extrusion, Publ. 25.06.2020, Bull. No. 18. S. B. Sidel’nikov, A. A. Strartsev, T. R. Gil’manshina, et al., RF Patent 2724758. Device for Ingotless Metal Rolling and Extrusion, Publ. 25.06.2020, Bull. No. 18.
20.
go back to reference G. I. Raab, É. I. Fakhretdinova, and R. Z. Valiev, “Development and study of SILIPP-IPD method for preparing high quality aluminum semifinished products,” J. Siberian Federal University. Engineering & Technologies, No. 3, 309–315 (2014). G. I. Raab, É. I. Fakhretdinova, and R. Z. Valiev, “Development and study of SILIPP-IPD method for preparing high quality aluminum semifinished products,” J. Siberian Federal University. Engineering & Technologies, No. 3, 309–315 (2014).
21.
go back to reference A. P. Klimko, V. S. Biront, S. B. Sidel’nikov, et al., RF patent 2257419. Method for Preparing Modified Materials for Aluminum and Its Alloys. Publ. 2005, Bull. No. 21. A. P. Klimko, V. S. Biront, S. B. Sidel’nikov, et al., RF patent 2257419. Method for Preparing Modified Materials for Aluminum and Its Alloys. Publ. 2005, Bull. No. 21.
22.
go back to reference Yu. P. Pshenichnov, Revelation of Fine Crystal Structure. Reference [in Russian], Metallurgiya, Moscow (1974). Yu. P. Pshenichnov, Revelation of Fine Crystal Structure. Reference [in Russian], Metallurgiya, Moscow (1974).
23.
go back to reference GOST 7229–76. Cables, Conductors and Cords. Methods for Determining Electrical Resistance of Current Carrying Cores and Conductors (with change No. 1). Intro 01.01.19. GOST 7229–76. Cables, Conductors and Cords. Methods for Determining Electrical Resistance of Current Carrying Cores and Conductors (with change No. 1). Intro 01.01.19.
24.
go back to reference V. M. Bespalov, S. B. Sidel’nikov, N. N. Dovzhenko, D. S. Voroshilov, et al., “Study of the effect of mixed casting and rolling – pressing process parameters on structure and properties of wrought semifinished products of alloys of the Al–Zr system with a different alloying element content,” Proizvod. Prokata., No. 3, 21–28 (2019). V. M. Bespalov, S. B. Sidel’nikov, N. N. Dovzhenko, D. S. Voroshilov, et al., “Study of the effect of mixed casting and rolling – pressing process parameters on structure and properties of wrought semifinished products of alloys of the Al–Zr system with a different alloying element content,” Proizvod. Prokata., No. 3, 21–28 (2019).
25.
go back to reference V. M. Bespalov, S. B. Sidel’nikov V. I. Belokopytov, and D. S. Voroshilov, “Effect of combined treatment and drawing parameters on the structure and properties of wire products of Al-Zr system alloys,” Tsvet. Met., No. 8, 68–75 (2020). V. M. Bespalov, S. B. Sidel’nikov V. I. Belokopytov, and D. S. Voroshilov, “Effect of combined treatment and drawing parameters on the structure and properties of wire products of Al-Zr system alloys,” Tsvet. Met., No. 8, 68–75 (2020).
26.
go back to reference A. P. Klimko, V. S. Biront, M. Yu. Murashkin, A. I. Grishechkin, et al., “Study of the temperature for the start of aluminum bar recrystallization prepared by SLIPP,” in: Material Science and Contemporary Technology, Inter-region Coll, ed. Yu. A. Balandina, Magnitogorsk (2002), pp. 15–18. A. P. Klimko, V. S. Biront, M. Yu. Murashkin, A. I. Grishechkin, et al., “Study of the temperature for the start of aluminum bar recrystallization prepared by SLIPP,” in: Material Science and Contemporary Technology, Inter-region Coll, ed. Yu. A. Balandina, Magnitogorsk (2002), pp. 15–18.
27.
go back to reference S B. Sidel’nikov, G. I. Raab, M. Yu. Murashkin, L. P. Trifonenkov, et al., (Study of the effect of intense plastic deformation on structure and physicomechanical properties of electrical engineering designation semifinished products of aluminum alloys with transition and rare-earth metals,” in: Modeling and Development of Metal Treatment Processes under Pressure: Internat. Sci.-Tech. Conf. (V.M. Salganik, editor) Izd. MGTU, Magnitogorsk (2014), pp. 12–20. S B. Sidel’nikov, G. I. Raab, M. Yu. Murashkin, L. P. Trifonenkov, et al., (Study of the effect of intense plastic deformation on structure and physicomechanical properties of electrical engineering designation semifinished products of aluminum alloys with transition and rare-earth metals,” in: Modeling and Development of Metal Treatment Processes under Pressure: Internat. Sci.-Tech. Conf. (V.M. Salganik, editor) Izd. MGTU, Magnitogorsk (2014), pp. 12–20.
28.
go back to reference IEC 62004–07. Thermal-Resistant Aluminum Alloys Wire for Overhead Line Conductor, Copyright International Commission, Geneva, Switzerland (2007). IEC 62004–07. Thermal-Resistant Aluminum Alloys Wire for Overhead Line Conductor, Copyright International Commission, Geneva, Switzerland (2007).
Metadata
Title
Investigation of Metal Structure Formation During Ingotless Rolling-Extrusion of Aluminum and Its Alloys
Authors
S. B. Sidel’nikov
E. S. Lopatina
I. L. Konstantinov
D. S. Voroshilov
Y. N. Mansurov
V. M. Bespalov
N. A. Terentev
Publication date
28-07-2023
Publisher
Springer US
Published in
Metallurgist / Issue 3-4/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01541-0

Other articles of this Issue 3-4/2023

Metallurgist 3-4/2023 Go to the issue

Premium Partners