Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2024

24-02-2024

Investigation of the Effect of Adding Waste Eggshell Particles to a Resin Used for SLA Printing Applications

Authors: G. A. Yavuz, B. G. Kıral, G. M. Gençer, Z. Kıral

Published in: Mechanics of Composite Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A composite resin containing eggshell particles for the additive manufacturing according to the stereolithography (SLA) printing technology was studied. First, the viscosity properties of the eggshell-particle-reinforced resin were determined. Then, the effect of particle wt% on the hardness, tensile, and compressive behaviors of the composite specimens were investigated. Besides, the optical microscopy images of unreinforced and reinforced 3D printed composites were scrutinized. The cross-sections of the composite were analyzed by the energy dispersion spectrometry and optical and scanning electron microscopes (EDS/SEM) in order to examine its structure in detail. To analyze the damping properties and the elastic modulus determined in tension and free vibration tests were also carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Lee, H. C. Kim, J. W. Choi, and I. H. Lee, “A review on 3D printed smart devices for 4D printing,” Int. J. Pr. Eng. Man-GT, 4, No. 3, 373-383 (2017). J. Lee, H. C. Kim, J. W. Choi, and I. H. Lee, “A review on 3D printed smart devices for 4D printing,” Int. J. Pr. Eng. Man-GT, 4, No. 3, 373-383 (2017).
2.
go back to reference M. G. Wimmer and B. G. Compton, “Semi-solid epoxy feedstocks with high glass transition temperature for material extrusion additive manufacturing,” Addit. Manuf., 54,102725 (2022). M. G. Wimmer and B. G. Compton, “Semi-solid epoxy feedstocks with high glass transition temperature for material extrusion additive manufacturing,” Addit. Manuf., 54,102725 (2022).
3.
go back to reference M. M. Garmabi, P. Shahi, J. Tjong, and M. Sain, “3D printing of polyphenylene sulfide for functional lightweigtht automotive component manufacturing through enhancing interlayer bonding,” Addit. Manuf., 56, 102780 (2022). M. M. Garmabi, P. Shahi, J. Tjong, and M. Sain, “3D printing of polyphenylene sulfide for functional lightweigtht automotive component manufacturing through enhancing interlayer bonding,” Addit. Manuf., 56, 102780 (2022).
4.
go back to reference M. Wiese, S. Thiede, and C. Herrmann, “Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges,” Addit. Manuf., 36, 101582 (2020). M. Wiese, S. Thiede, and C. Herrmann, “Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges,” Addit. Manuf., 36, 101582 (2020).
5.
go back to reference V. S. Aigbodion and I. C. Ezema, “Multifunctional A356 alloy/ PKSAnp composites: Microstructure and mechanical properties,” Def. Technol., 16, 731-736 (2020).CrossRef V. S. Aigbodion and I. C. Ezema, “Multifunctional A356 alloy/ PKSAnp composites: Microstructure and mechanical properties,” Def. Technol., 16, 731-736 (2020).CrossRef
6.
go back to reference L. G. Li, B. F. Xiao, Z. Q. Fang, Z. Xiong, S. H. Chu, and A. K. H. Kwan, “Feasibility of glass/basalt fiber reinforced seawater coral sand mortar for 3D printing,” Addit. Manuf., 37, 101684 (2021). L. G. Li, B. F. Xiao, Z. Q. Fang, Z. Xiong, S. H. Chu, and A. K. H. Kwan, “Feasibility of glass/basalt fiber reinforced seawater coral sand mortar for 3D printing,” Addit. Manuf., 37, 101684 (2021).
7.
go back to reference Z. D. Wang, G. F. Sun, M. Z. Chen, Y. Lu, S. B. Zhang, H. F. Lan, K. D. Bi, and Z. H. Ni, “Investigation of the under-water laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance,” Addit. Manuf., 39, 101884 (2021). Z. D. Wang, G. F. Sun, M. Z. Chen, Y. Lu, S. B. Zhang, H. F. Lan, K. D. Bi, and Z. H. Ni, “Investigation of the under-water laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance,” Addit. Manuf., 39, 101884 (2021).
8.
go back to reference C. S. Wu, D. Y. Wu, and S. S. Wang, “Preparation and characterization of polylactic acid/bamboo fiber composites,” ACS Appl. Bio Mater., 5, 1038-1046 (2022).PubMedCrossRef C. S. Wu, D. Y. Wu, and S. S. Wang, “Preparation and characterization of polylactic acid/bamboo fiber composites,” ACS Appl. Bio Mater., 5, 1038-1046 (2022).PubMedCrossRef
9.
go back to reference C. S. Wu, S. S. Wang, D. Y. Wu, and W. L. Shih, “Novel composite 3D-printed filament made from fish scale-derived hydroxyapatite, eggshell and polylactic acid via a fused fabrication approach,” Addit. Manuf., 46, 102169 (2021). C. S. Wu, S. S. Wang, D. Y. Wu, and W. L. Shih, “Novel composite 3D-printed filament made from fish scale-derived hydroxyapatite, eggshell and polylactic acid via a fused fabrication approach,” Addit. Manuf., 46, 102169 (2021).
10.
go back to reference W. Chen, L. Nichols, F. Brinkley, K. Bohna, W. Tian, M. W. Priddy, and L. B. Priddy, “Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds,” Mater. Sci. Eng. C, 120, 111686 (2021).CrossRef W. Chen, L. Nichols, F. Brinkley, K. Bohna, W. Tian, M. W. Priddy, and L. B. Priddy, “Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds,” Mater. Sci. Eng. C, 120, 111686 (2021).CrossRef
11.
go back to reference Z. Ma, J. Lin, X. Xu, Z. Ma, L. Tang, C. Sun, D. Li, C. Liu, Y. Zhong, and L. Wang, “Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles,” Int. J. Lightweight Mater. Manuf., 2, 57-63 (2019). Z. Ma, J. Lin, X. Xu, Z. Ma, L. Tang, C. Sun, D. Li, C. Liu, Y. Zhong, and L. Wang, “Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles,” Int. J. Lightweight Mater. Manuf., 2, 57-63 (2019).
12.
go back to reference A. Islam, S. P. Dwivedi, and V. K. Dwivedi, “Effect of friction stir process parameters on tensile strength of eggshell and SiC-reinforced aluminium-based composite,” World J. Eng., 18, 157-166 (2021).CrossRef A. Islam, S. P. Dwivedi, and V. K. Dwivedi, “Effect of friction stir process parameters on tensile strength of eggshell and SiC-reinforced aluminium-based composite,” World J. Eng., 18, 157-166 (2021).CrossRef
13.
go back to reference T. Anukiruthika, J. A. Moses, and C. Anandharamakrishnan, “3D printing of egg yolk and white with rice flour blends,” J. Food Eng., 265, 109691 (2020).CrossRef T. Anukiruthika, J. A. Moses, and C. Anandharamakrishnan, “3D printing of egg yolk and white with rice flour blends,” J. Food Eng., 265, 109691 (2020).CrossRef
14.
go back to reference S. P. Dwivedi and A. K. Srivastava, “Utilization of chrome containing leather waste in development of aluminium based green composite material,” Int. J. Pr. Eng. Man-GT, 7, No. 3, 781-790 (2020). S. P. Dwivedi and A. K. Srivastava, “Utilization of chrome containing leather waste in development of aluminium based green composite material,” Int. J. Pr. Eng. Man-GT, 7, No. 3, 781-790 (2020).
15.
go back to reference J. E. Galve, D. Elduque, C. Pina, and C. Javierre, “Life cycle Assessment of a plastic part injected with recycled polypropylene: A comparison with alternative virgin materials,” Int. J. Pr. Eng. Man-GT, 9, No. 3, 919-932 (2022). J. E. Galve, D. Elduque, C. Pina, and C. Javierre, “Life cycle Assessment of a plastic part injected with recycled polypropylene: A comparison with alternative virgin materials,” Int. J. Pr. Eng. Man-GT, 9, No. 3, 919-932 (2022).
16.
go back to reference A. Kazemi, M. Abdellahi, A. Khajeh-Sharafabadi, A. Khandan, and N. Ozada, “Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material,” Mater. Sci. Eng. C, 71, 604-610 (2017).CrossRef A. Kazemi, M. Abdellahi, A. Khajeh-Sharafabadi, A. Khandan, and N. Ozada, “Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material,” Mater. Sci. Eng. C, 71, 604-610 (2017).CrossRef
17.
go back to reference K. Huang, J. Hou, Z. Gu, and J. Wu, “Egg-white-/eggshell-based biomimetic hybrid hydrogels for bone regeneration,” ACS Biomater. Sci. Eng., 5, 5384-5391 (2019).PubMedCrossRef K. Huang, J. Hou, Z. Gu, and J. Wu, “Egg-white-/eggshell-based biomimetic hybrid hydrogels for bone regeneration,” ACS Biomater. Sci. Eng., 5, 5384-5391 (2019).PubMedCrossRef
18.
go back to reference M. Trivedi, J. Jee, S. Silva, C. Blomgren, V. M. Pontinha, D. L. Dixon, B. V. Tassel, M. J. Bortner, C. Wiliams, E. Gilmer, A. P. Haring, J. Halper, B. N. Johnson, Z. Kong, M. S. Halquist, P. F. Rocheleau, T. E. Long, T. Roper, and D. S. Wijesinghe, “Additive manufacturing of pharmaceuticals for precision medicine applications: A review of the promises and perils in implementation,” Addit. Manuf., 23, 319-328 (2018). M. Trivedi, J. Jee, S. Silva, C. Blomgren, V. M. Pontinha, D. L. Dixon, B. V. Tassel, M. J. Bortner, C. Wiliams, E. Gilmer, A. P. Haring, J. Halper, B. N. Johnson, Z. Kong, M. S. Halquist, P. F. Rocheleau, T. E. Long, T. Roper, and D. S. Wijesinghe, “Additive manufacturing of pharmaceuticals for precision medicine applications: A review of the promises and perils in implementation,” Addit. Manuf., 23, 319-328 (2018).
19.
go back to reference G. S. Sivagnanamani, S. R. Begum, R. Siva, and M. S. Kumar, “Experimental investigation on influence of waste egg shell particles on polylactic acid matrix for additive manufacturing application,” J. Mater. Eng. Perfor., 31, 3471-3480 (2022).CrossRef G. S. Sivagnanamani, S. R. Begum, R. Siva, and M. S. Kumar, “Experimental investigation on influence of waste egg shell particles on polylactic acid matrix for additive manufacturing application,” J. Mater. Eng. Perfor., 31, 3471-3480 (2022).CrossRef
20.
go back to reference S. P. Dwivedi, S. Sharma, and R. K. Mishra, “Effects of waste eggshells and SiC addition in the synthesis of aluminum hybrid green metal matrix composite,” Green Process. Synth., 6, 113-123 (2017).CrossRef S. P. Dwivedi, S. Sharma, and R. K. Mishra, “Effects of waste eggshells and SiC addition in the synthesis of aluminum hybrid green metal matrix composite,” Green Process. Synth., 6, 113-123 (2017).CrossRef
21.
go back to reference S. P. Dwivedi, S. Sharma, and R. K. Mishra, “Characterization of waste eggshells and CaCO3 reinforced AA2014 green metal matrix composites: A green approach in the synthesis of composites,” Int. J. Precis. Eng. Man., 17, 1383-1393 (2016).CrossRef S. P. Dwivedi, S. Sharma, and R. K. Mishra, “Characterization of waste eggshells and CaCO3 reinforced AA2014 green metal matrix composites: A green approach in the synthesis of composites,” Int. J. Precis. Eng. Man., 17, 1383-1393 (2016).CrossRef
22.
go back to reference B. J. Tiimob, S. Jeelani, and V. K. Rangari, “Eggshell reinforced biocomposite-An advanced “green” alternative structural material,” J. Appl. Polym. Sci., 133, 1-10 (2016).CrossRef B. J. Tiimob, S. Jeelani, and V. K. Rangari, “Eggshell reinforced biocomposite-An advanced “green” alternative structural material,” J. Appl. Polym. Sci., 133, 1-10 (2016).CrossRef
23.
go back to reference M. Felipe-Sesé, D. Eliche-Quesada, and F. A. Corpas-Iglesias, “The use of solid residues derived from different industrial activities to obtain calcium silicates for use as insulating construction materials,” Ceram. Int., 37, 3019-3028 (2011).CrossRef M. Felipe-Sesé, D. Eliche-Quesada, and F. A. Corpas-Iglesias, “The use of solid residues derived from different industrial activities to obtain calcium silicates for use as insulating construction materials,” Ceram. Int., 37, 3019-3028 (2011).CrossRef
24.
go back to reference S. P. Dwivedi, S. Sharma, and R. K. Mishra, “A comparative study of waste eggshells, CaCO3, and SiC-reinforced AA2014 green metal matrix composites,” J. Compos. Mater., 51, 2407-2421 (2017).ADSCrossRef S. P. Dwivedi, S. Sharma, and R. K. Mishra, “A comparative study of waste eggshells, CaCO3, and SiC-reinforced AA2014 green metal matrix composites,” J. Compos. Mater., 51, 2407-2421 (2017).ADSCrossRef
25.
go back to reference M. A. Almomani, M. T. Hayajneh, and M. M. Al-Shrida, “Investigation of mechanical and tribological properties of hybrid green eggshells and graphite-reinforced aluminum composites,” J. Braz. Soc. Mech. Sci. Eng., 42, No. 45 (2020). M. A. Almomani, M. T. Hayajneh, and M. M. Al-Shrida, “Investigation of mechanical and tribological properties of hybrid green eggshells and graphite-reinforced aluminum composites,” J. Braz. Soc. Mech. Sci. Eng., 42, No. 45 (2020).
26.
go back to reference K. A. Iyer and J. M. Torkelson, “Green composites of polypropylene and eggshell: Effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization,” Composites Sci. and Tech., 102, 152-160 (2014).CrossRef K. A. Iyer and J. M. Torkelson, “Green composites of polypropylene and eggshell: Effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization,” Composites Sci. and Tech., 102, 152-160 (2014).CrossRef
27.
go back to reference T. Boronat, V. Fombuena, D. Garcia-Sanoguera, L. Sanchez-Nacher, and R. Balart, “Development of a biocomposite based on green polyethylene biopolymer and eggshell,” Mater. Des., 68, 177-185 (2015).CrossRef T. Boronat, V. Fombuena, D. Garcia-Sanoguera, L. Sanchez-Nacher, and R. Balart, “Development of a biocomposite based on green polyethylene biopolymer and eggshell,” Mater. Des., 68, 177-185 (2015).CrossRef
28.
go back to reference S. Sharma and S. P. Dwivedi, “Effects of waste eggshells and SiC addition on specific strength and thermal expansion of hybrid green metal matrix composite,” J. Hazard. Mater., 333, 1-9 (2017).PubMedCrossRef S. Sharma and S. P. Dwivedi, “Effects of waste eggshells and SiC addition on specific strength and thermal expansion of hybrid green metal matrix composite,” J. Hazard. Mater., 333, 1-9 (2017).PubMedCrossRef
29.
go back to reference S. P. Dwivedi, S. Sharma, and R. K. Mishra, “Mechanical and metallurgical characterizations of AA2014/eggshells waste particulate metal matrix composite,” Int. J. Pr. Eng. Man.-GT, 3, 281-288 (2016). S. P. Dwivedi, S. Sharma, and R. K. Mishra, “Mechanical and metallurgical characterizations of AA2014/eggshells waste particulate metal matrix composite,” Int. J. Pr. Eng. Man.-GT, 3, 281-288 (2016).
30.
go back to reference D. V. Lohar, A. M. Nikalje, and P. G. Damle, “Novel hybrid bio composites of PLA with waste bio fillers,” Recent Advances in Manufacturing Processes and Systems, 717-729 (2022). D. V. Lohar, A. M. Nikalje, and P. G. Damle, “Novel hybrid bio composites of PLA with waste bio fillers,” Recent Advances in Manufacturing Processes and Systems, 717-729 (2022).
31.
go back to reference S. I. Biscaia, T. F. Viana, H. A. Almeida, and P. J. Bártolo, “Production and characterisation of PCL/es scaffolds for bone tissue engineering,” Mater. Today: Proc., 2, No. 1, 208-216 (2015). S. I. Biscaia, T. F. Viana, H. A. Almeida, and P. J. Bártolo, “Production and characterisation of PCL/es scaffolds for bone tissue engineering,” Mater. Today: Proc., 2, No. 1, 208-216 (2015).
32.
go back to reference F. Cestari, M. Petretta, Y. Yang, A. Motta, B. Grigolo, and V. M. Sglavo, “3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering,” Sustain. Mater. Technol., 29, e00318 (2021). F. Cestari, M. Petretta, Y. Yang, A. Motta, B. Grigolo, and V. M. Sglavo, “3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering,” Sustain. Mater. Technol., 29, e00318 (2021).
33.
go back to reference H. Wu, D. Xiao, J. Lu, T. Li, C. Jiao, S. Li, P. Lu, and Z. Zhang, “Preparation and properties of biocomposite films based on poly (vinyl alcohol) incorporated with eggshell powder as a biological filler,” J. Polym. Environ., 28, No. 7, 2020-2028 (2020).CrossRef H. Wu, D. Xiao, J. Lu, T. Li, C. Jiao, S. Li, P. Lu, and Z. Zhang, “Preparation and properties of biocomposite films based on poly (vinyl alcohol) incorporated with eggshell powder as a biological filler,” J. Polym. Environ., 28, No. 7, 2020-2028 (2020).CrossRef
34.
go back to reference M. Bootklad and K. Kaewtatip, “Biodegradation of thermoplastic starch/eggshell powder composites,” Carbohydr. Polym., 97, No. 2, 315-320 (2013).PubMedCrossRef M. Bootklad and K. Kaewtatip, “Biodegradation of thermoplastic starch/eggshell powder composites,” Carbohydr. Polym., 97, No. 2, 315-320 (2013).PubMedCrossRef
35.
go back to reference T. A. Hassan, V. K. Rangari, and S. Jeelani, “Value-added biopolymer nanocomposites from waste eggshell-based CaCO3 nanoparticles as fillers,” ACS Sustain. Chem. Eng., 2, No. 4, 706-717 (2014).CrossRef T. A. Hassan, V. K. Rangari, and S. Jeelani, “Value-added biopolymer nanocomposites from waste eggshell-based CaCO3 nanoparticles as fillers,” ACS Sustain. Chem. Eng., 2, No. 4, 706-717 (2014).CrossRef
36.
go back to reference M. N. Prabhakar, A. U. R. Shah, and J-I. Song, “Fabrication and characterization of eggshell powder particles fused wheat protein isolate green composite for packaging applications,” Polym. Compos., 37, No. 11, 3280-3287 (2015).CrossRef M. N. Prabhakar, A. U. R. Shah, and J-I. Song, “Fabrication and characterization of eggshell powder particles fused wheat protein isolate green composite for packaging applications,” Polym. Compos., 37, No. 11, 3280-3287 (2015).CrossRef
37.
go back to reference M. M. Rahman, A. N. Netravali, B. J. Tiimob, and V. K. Rangari, “Bioderived “green” composite from soy protein and eggshell nanopowder,” ACS Sustain. Chem. Eng., 2, No. 10, 2329-2337 (2014).CrossRef M. M. Rahman, A. N. Netravali, B. J. Tiimob, and V. K. Rangari, “Bioderived “green” composite from soy protein and eggshell nanopowder,” ACS Sustain. Chem. Eng., 2, No. 10, 2329-2337 (2014).CrossRef
38.
go back to reference Y. Li, S. Xin, Y. Bian, K. Xu, C. Han, and L. Dong, “The physical properties of poly(l-lactide) and functionalized eggshell powder composites,” Int. J. Biol. Macromol., 85, 63-73 (2016).PubMedCrossRef Y. Li, S. Xin, Y. Bian, K. Xu, C. Han, and L. Dong, “The physical properties of poly(l-lactide) and functionalized eggshell powder composites,” Int. J. Biol. Macromol., 85, 63-73 (2016).PubMedCrossRef
39.
go back to reference Y. Li, C. Han, Y. Yu, L. Xiao, and Y. Shao, “Crystallization behaviors of poly (lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol),” Thermochim. Acta, 663, 67-76 (2018).ADSCrossRef Y. Li, C. Han, Y. Yu, L. Xiao, and Y. Shao, “Crystallization behaviors of poly (lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol),” Thermochim. Acta, 663, 67-76 (2018).ADSCrossRef
40.
go back to reference J. Kong, Y. Li, Y. Bai, Z. Li, Z. Cao, Y. Yu, C. Han, and L. Dong, “High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder,” Int. J. Biol. Macromol., 112, 46-53 (2018).PubMedCrossRef J. Kong, Y. Li, Y. Bai, Z. Li, Z. Cao, Y. Yu, C. Han, and L. Dong, “High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder,” Int. J. Biol. Macromol., 112, 46-53 (2018).PubMedCrossRef
41.
go back to reference S.-T. Bee, S.-Q. Liew, W. Ang, L.T. Sin, S.-L. Bee, and A. R. Rahmat, “Interactive effect of calcined eggshell and montmorillonite on the characteristics of polyvinyl alcohol blends,” J. Vinyl Addit. Technol., 24, No. 4, 324-338 (2018).CrossRef S.-T. Bee, S.-Q. Liew, W. Ang, L.T. Sin, S.-L. Bee, and A. R. Rahmat, “Interactive effect of calcined eggshell and montmorillonite on the characteristics of polyvinyl alcohol blends,” J. Vinyl Addit. Technol., 24, No. 4, 324-338 (2018).CrossRef
42.
go back to reference V. Trakoolwannachai, P. Kheolamai, and S. Ummartyotin, “Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material,” Compos. B. Eng., 173, 106974 (2019).CrossRef V. Trakoolwannachai, P. Kheolamai, and S. Ummartyotin, “Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material,” Compos. B. Eng., 173, 106974 (2019).CrossRef
43.
go back to reference N. A. N. Azman, M. R. Islam, M. Parimalam, N. M. Rashidi, and M. Mupit, “Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO3 particles,” Polym. Bull., 77, No. 2, 805-821 (2020).CrossRef N. A. N. Azman, M. R. Islam, M. Parimalam, N. M. Rashidi, and M. Mupit, “Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO3 particles,” Polym. Bull., 77, No. 2, 805-821 (2020).CrossRef
44.
go back to reference R. Kumar, M. Kumar, and J. S. Chohan, “The role of additive manufacturing for biomedical applications: A critical review,” J. Manuf. Process., 64, 828-850 (2021).CrossRef R. Kumar, M. Kumar, and J. S. Chohan, “The role of additive manufacturing for biomedical applications: A critical review,” J. Manuf. Process., 64, 828-850 (2021).CrossRef
45.
go back to reference X. Xu, A. Goyanes, S. J. Trenfield, L. Diaz-Gomez, C. Alvarez-Lorenzo, S. Gaisford, and A. W. Basit, “Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery,” Mater. Sci. Eng. C, 120, 111773 (2021).CrossRef X. Xu, A. Goyanes, S. J. Trenfield, L. Diaz-Gomez, C. Alvarez-Lorenzo, S. Gaisford, and A. W. Basit, “Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery,” Mater. Sci. Eng. C, 120, 111773 (2021).CrossRef
46.
go back to reference F. Medel, J. Abad, and V. Esteban, “Stiffness and damping behavior of 3D printed specimens,” Polym. Test., 109, 107529 (2022).CrossRef F. Medel, J. Abad, and V. Esteban, “Stiffness and damping behavior of 3D printed specimens,” Polym. Test., 109, 107529 (2022).CrossRef
47.
go back to reference K. Arunprasath, M. Vijayakumar, M. Ramarao, T. G. Arul, S. P. Pauldoss, M. Selwin, B. Radhakrishnan, and V. Manikandan, “Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS),” Mater. Today: Proc., 50, 1559-1562 (2022). K. Arunprasath, M. Vijayakumar, M. Ramarao, T. G. Arul, S. P. Pauldoss, M. Selwin, B. Radhakrishnan, and V. Manikandan, “Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS),” Mater. Today: Proc., 50, 1559-1562 (2022).
48.
go back to reference M. M. Jalili, A. S. Pirayeshfar, and S. Y. Mousavi, “A comparative study on viscoelastic properties of polymeric composites measured by a longitudinal free vibration non-destructive test and dynamic mechanical thermal analysis,” Iran. Polym. J., 21, No. 9, 651–659 (2012).CrossRef M. M. Jalili, A. S. Pirayeshfar, and S. Y. Mousavi, “A comparative study on viscoelastic properties of polymeric composites measured by a longitudinal free vibration non-destructive test and dynamic mechanical thermal analysis,” Iran. Polym. J., 21, No. 9, 651–659 (2012).CrossRef
49.
go back to reference V. Hiremath and D. K. Shukla, “Rheological properties and curing behaviour of epoxy-alumina nanocomposites,” Mater. Today: Proc., 22, 2732-2740 (2020). V. Hiremath and D. K. Shukla, “Rheological properties and curing behaviour of epoxy-alumina nanocomposites,” Mater. Today: Proc., 22, 2732-2740 (2020).
50.
go back to reference E. C. Botelho, M. C. Rezende, and L. C. Pardini, “Comparison between the elastic modulus obtained by tensile and free vibration experiments for glare material,” 18th International Congress of Mechanical Engineering, Ouro Preto, MG (2005). E. C. Botelho, M. C. Rezende, and L. C. Pardini, “Comparison between the elastic modulus obtained by tensile and free vibration experiments for glare material,” 18th International Congress of Mechanical Engineering, Ouro Preto, MG (2005).
Metadata
Title
Investigation of the Effect of Adding Waste Eggshell Particles to a Resin Used for SLA Printing Applications
Authors
G. A. Yavuz
B. G. Kıral
G. M. Gençer
Z. Kıral
Publication date
24-02-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10177-3

Other articles of this Issue 1/2024

Mechanics of Composite Materials 1/2024 Go to the issue

Premium Partners