Skip to main content
Top

2020 | OriginalPaper | Chapter

Investigation of the Effect of DMMP Addition on the Methane–Air Premixed Flame Thickness

Authors : Wei Li, Yong Jiang, Rujia Fan

Published in: The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flame thickness is an important parameter in both laminar and turbulent flame studies. To provide some basic understanding of the effect of the fire inhibitor on the laminar flame thickness, numerical calculations of methane–air premixed flames doped by dimethyl methyl phosphonate (DMMP) were conducted. The results show that the flame speed depends highly on the reactions: \( {\text{HOPO}}_{2} + {\text{H}}_{2} = {\text{PO}}_{2} + {\text{H}}_{2} {\text{O}} \); \( {\text{PO}}_{2} + {\text{H}} + {\text{M}} = {\text{HOPO}} + {\text{M}} \); \( {\text{HOPO}} + {\text{OH}} = {\text{PO}}_{ 2} + {\text{H2O}} \); and \( {\text{HOPO}} + {\text{OH}} = {\text{PO}}_{ 2} + {\text{H}}_{ 2} {\text{O}} \) The laminar flame thickness increases with the increase of the DMMP addition. The preheat sub-zone in the flame front is more vulnerable to the inhibition effect of DMMP. Based on the opposed-flow flame calculations with different outlet velocities, the results indicate that the preheat sub-zone is more dependent on the local stretch rate than the reaction sub-zone. To figure out the reason why the flames become thicker after DMMP addition, the flames’ chemical structures are extracted and discussed. It is found that the chemical reactions in the flame zone are retarded and the upstream gas flow velocity is artificially reduced to make the flame surface stay in a certain area in the calculation. Accordingly, the residence time of the reactant mixture increases, and the CH2O and OH diffuse and distribute in a wide area. Therefore, the radical-based flame thickness increases with DMMP addition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference The Montreal Protocol on Substances that Deplete the Ozone Layer, in U. Nations (5th ed.), 1999. The Montreal Protocol on Substances that Deplete the Ozone Layer, in U. Nations (5th ed.), 1999.
2.
go back to reference Xu, W., Jiang, Y., Qiu, R., & Ren, X. (2017). Influence of Halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames. Combustion and Flame, 182, 1–13.CrossRef Xu, W., Jiang, Y., Qiu, R., & Ren, X. (2017). Influence of Halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames. Combustion and Flame, 182, 1–13.CrossRef
3.
go back to reference Ren, X., Jiang, Y., & Xu, W. (2016). Numerical investigation of the chemical and physical effects of halogenated fire suppressants addition on methane–air mixtures. Journal of Fire Sciences, 34, 416–430.CrossRef Ren, X., Jiang, Y., & Xu, W. (2016). Numerical investigation of the chemical and physical effects of halogenated fire suppressants addition on methane–air mixtures. Journal of Fire Sciences, 34, 416–430.CrossRef
4.
go back to reference Babushok, V. I., Linteris, G. T., Meier, O. C., & Pagliaro, J. L. (2014). Flame inhibition by CF3CHCl2(HCFC-123). Combustion Science and Technology, 186, 792–814.CrossRef Babushok, V. I., Linteris, G. T., Meier, O. C., & Pagliaro, J. L. (2014). Flame inhibition by CF3CHCl2(HCFC-123). Combustion Science and Technology, 186, 792–814.CrossRef
5.
go back to reference Simpson, W. R., Glasow, R. V., Riedel, K., Anderson, P., & Ariya, P. (2007). Halogens and their role in polar boundary-layer ozone depletion. European Geosciences Union, 16, 4375–4418. Simpson, W. R., Glasow, R. V., Riedel, K., Anderson, P., & Ariya, P. (2007). Halogens and their role in polar boundary-layer ozone depletion. European Geosciences Union, 16, 4375–4418.
6.
go back to reference Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37, 275–316.CrossRef Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37, 275–316.CrossRef
7.
go back to reference Fontaine, G., Bourbigot, S., & Duquesne, S. (2008). Neutralized flame retardant phosphorus agent: Facile synthesis, reaction to fire in PP and synergy with zinc borate. Polymer Degradation and Stability, 93, 68–76.CrossRef Fontaine, G., Bourbigot, S., & Duquesne, S. (2008). Neutralized flame retardant phosphorus agent: Facile synthesis, reaction to fire in PP and synergy with zinc borate. Polymer Degradation and Stability, 93, 68–76.CrossRef
8.
go back to reference Bourbigot, S., & Duquesne, S. (2007). Fire retardant polymers: Recent developments and opportunities. Journal of Materials Chemistry, 17, 2283.CrossRef Bourbigot, S., & Duquesne, S. (2007). Fire retardant polymers: Recent developments and opportunities. Journal of Materials Chemistry, 17, 2283.CrossRef
9.
go back to reference Korobeinichev, O. P., Shvartsberg, V. M., Shmakov, A. G., Bolshova, T. A., Jayaweera, T. M., Melius, C. F., et al. (2005). Flame inhibition by phosphorus-containing compounds in lean and rich propane flames. Proceedings of the Combustion Institute, 30, 2353–2360.CrossRef Korobeinichev, O. P., Shvartsberg, V. M., Shmakov, A. G., Bolshova, T. A., Jayaweera, T. M., Melius, C. F., et al. (2005). Flame inhibition by phosphorus-containing compounds in lean and rich propane flames. Proceedings of the Combustion Institute, 30, 2353–2360.CrossRef
10.
go back to reference Jayaweera, T. M., Melius, C. F., Pitz, W. J., Westbrook, C. K., Korobeinichev, O. P., Shvartsberg, V. M., et al. (2005). Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios. Combustion and Flame, 140, 103–115.CrossRef Jayaweera, T. M., Melius, C. F., Pitz, W. J., Westbrook, C. K., Korobeinichev, O. P., Shvartsberg, V. M., et al. (2005). Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios. Combustion and Flame, 140, 103–115.CrossRef
11.
go back to reference Macdonald, M. A., Jayaweera, T. M., Fisher, E. M., & Gouldin, F. C. (1999). Inhibition of nonpremixed flames by phosphorus-containing compounds. Combustion and Flame, 116, 166–176.CrossRef Macdonald, M. A., Jayaweera, T. M., Fisher, E. M., & Gouldin, F. C. (1999). Inhibition of nonpremixed flames by phosphorus-containing compounds. Combustion and Flame, 116, 166–176.CrossRef
12.
go back to reference Bouvet, N., Linteris, G. T., Babushok, V. I., Takahashi, F., Katta, V. R., & Krämer, R. (2016). A comparison of the gas-phase fire retardant action of DMMP and Br 2 in co-flow diffusion flame extinguishment. Combustion and Flame, 169, 340–348.CrossRef Bouvet, N., Linteris, G. T., Babushok, V. I., Takahashi, F., Katta, V. R., & Krämer, R. (2016). A comparison of the gas-phase fire retardant action of DMMP and Br 2 in co-flow diffusion flame extinguishment. Combustion and Flame, 169, 340–348.CrossRef
13.
go back to reference Pagliaro, J. L., Linteris, G. T., & Babushok, V. I. (2016). Premixed flame inhibition by C2HF3Cl2 and C2HF5. Combustion and Flame, 163, 54–65.CrossRef Pagliaro, J. L., Linteris, G. T., & Babushok, V. I. (2016). Premixed flame inhibition by C2HF3Cl2 and C2HF5. Combustion and Flame, 163, 54–65.CrossRef
14.
go back to reference Borghi, R. (1988). Turbulent combustion modelling. Progress in Energy and Combustion Science, 14, 245–292.CrossRef Borghi, R. (1988). Turbulent combustion modelling. Progress in Energy and Combustion Science, 14, 245–292.CrossRef
15.
go back to reference Peters, N. (2000). Turbulent combustion. Cambridge: Cambridge University Press.CrossRef Peters, N. (2000). Turbulent combustion. Cambridge: Cambridge University Press.CrossRef
16.
go back to reference Zeldovich, Y. B. (1944). The theory of combustion and detonation. Publ. Academy of Sciences. Zeldovich, Y. B. (1944). The theory of combustion and detonation. Publ. Academy of Sciences.
17.
go back to reference Spalding, D. B. (1955). Some fundamentals of combustion, Butterworth Scientific. Spalding, D. B. (1955). Some fundamentals of combustion, Butterworth Scientific.
18.
go back to reference Li, Z., Li, B., Sun, Z., Bai, X. S., & Aldén, M. (2010). Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame. Combustion and Flame, 157, 1087–1096.CrossRef Li, Z., Li, B., Sun, Z., Bai, X. S., & Aldén, M. (2010). Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame. Combustion and Flame, 157, 1087–1096.CrossRef
20.
go back to reference Wu, Y., Modica, V., Rossow, B., & Grisch, F. (2016). Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures. Fuel, 185, 577–588.CrossRef Wu, Y., Modica, V., Rossow, B., & Grisch, F. (2016). Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures. Fuel, 185, 577–588.CrossRef
21.
go back to reference Hu, E., Li, X., Meng, X., Chen, Y., Cheng, Y., Xie, Y., et al. (2015). Laminar flame speeds and ignition delay times of methane–air mixtures at elevated temperatures and pressures. Fuel, 158, 1–10.CrossRef Hu, E., Li, X., Meng, X., Chen, Y., Cheng, Y., Xie, Y., et al. (2015). Laminar flame speeds and ignition delay times of methane–air mixtures at elevated temperatures and pressures. Fuel, 158, 1–10.CrossRef
22.
go back to reference Fan, C. L., & Wang, L. S. (2010). Vapor pressure of dimethyl phosphite and dimethyl methylphosphonate. Journal of Chemical and Engineering Data, 55, 479–481.CrossRef Fan, C. L., & Wang, L. S. (2010). Vapor pressure of dimethyl phosphite and dimethyl methylphosphonate. Journal of Chemical and Engineering Data, 55, 479–481.CrossRef
23.
go back to reference Babushok, V. I., Linteris, G. T., Katta, V. R., & Takahashi, F. (2016). Influence of hydrocarbon moiety of DMMP on flame propagation in lean mixtures. Combustion and Flame, 171, 168–172.CrossRef Babushok, V. I., Linteris, G. T., Katta, V. R., & Takahashi, F. (2016). Influence of hydrocarbon moiety of DMMP on flame propagation in lean mixtures. Combustion and Flame, 171, 168–172.CrossRef
24.
go back to reference Luo, C., Dlugogorski, B. Z., & Kennedy, E. M. (2008). Influence of CF3I and CBr F3 on methanol-air and methane-air premixed flames. Fire Technology, 44, 221–237.CrossRef Luo, C., Dlugogorski, B. Z., & Kennedy, E. M. (2008). Influence of CF3I and CBr F3 on methanol-air and methane-air premixed flames. Fire Technology, 44, 221–237.CrossRef
25.
go back to reference Babushok, V., & Tsang, W. (2000). Inhibitor rankings for alkane combustion. Combustion and Flame, 123, 488–506.CrossRef Babushok, V., & Tsang, W. (2000). Inhibitor rankings for alkane combustion. Combustion and Flame, 123, 488–506.CrossRef
26.
go back to reference Bouvet, N., Linteris, G., Babushok, V., Takahashi, F., Katta, V., & Krämer, R. (2016). Experimental and numerical investigation of the gas-phase effectiveness of phosphorus compounds. Fire and Materials, 40, 683–696.CrossRef Bouvet, N., Linteris, G., Babushok, V., Takahashi, F., Katta, V., & Krämer, R. (2016). Experimental and numerical investigation of the gas-phase effectiveness of phosphorus compounds. Fire and Materials, 40, 683–696.CrossRef
Metadata
Title
Investigation of the Effect of DMMP Addition on the Methane–Air Premixed Flame Thickness
Authors
Wei Li
Yong Jiang
Rujia Fan
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9139-3_3