Skip to main content
Top

2025 | OriginalPaper | Chapter

Investigation of the Impact of Slider Mass Stiffness on the Behavior of the Variable Inertia Rotational Mechanism for Structural Vibration Mitigation

Authors : Anika T. Sarkar, Nicholas E. Wierschem

Published in: Dynamics of Civil Structures, Vol. 2

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Structural control devices can help mitigate the response and subsequent damage to structures that result from dynamic loads, such as earthquakes and wind loads. Rotational inertial mechanisms offer a promising avenue for achieving this goal by providing significant mass effects without the need for large physical masses. Among these mechanisms, the variable inertia rotational mechanism (VIRM) is a nonlinear control device with adjustable rotational inertia and thus produces modifiable mass effects, achieved by incorporating slider masses inside the device’s flywheel. While previous research on the VIRM has predominantly focused on active or semi-active control systems, the passive implementation of VIRM and its efficacy in vibration mitigation remains relatively unexplored. As a result, the effects of the device parameters, most prominently slider stiffness, and the impact of these parameters on the device’s ability to reduce response under random excitation are uncertain. This chapter addresses these gaps in knowledge through a numerical study considering a single-degree-of-freedom primary structure. The study aims to investigate the different stiffness characteristics of the VIRM, including modeled properties of the stiffness element attached to the slider masses, on the natural frequency shifts and response mitigation. The natural frequency and response measures are evaluated by estimating the system’s instantaneous frequency and an H2-based measure. The results of this study highlight the ability of VIRM to shift natural frequencies and reduce response in structures subjected to random excitation and will encourage the further study of these innovative devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Smith, M.C.: Force-Controlling Hydraulic Device. US 2021/0199428 A1 (2012) Smith, M.C.: Force-Controlling Hydraulic Device. US 2021/0199428 A1 (2012)
9.
go back to reference Ullman, D.G.: A Variable Inertia Flywheel as an Energy Storage System. The Ohio State University (1978) Ullman, D.G.: A Variable Inertia Flywheel as an Energy Storage System. The Ohio State University (1978)
Metadata
Title
Investigation of the Impact of Slider Mass Stiffness on the Behavior of the Variable Inertia Rotational Mechanism for Structural Vibration Mitigation
Authors
Anika T. Sarkar
Nicholas E. Wierschem
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68889-8_7