Skip to main content
Top
Published in:

28-10-2022 | Technical Article

Investigation on 3D Printing of Graphene and Multi-walled Carbon Nanotube Mixed Flexible Electrically Conductive Parts Using Fused Filament Fabrication

Authors: Arpit Bajpai, Prashant Kumar Jain

Published in: Journal of Materials Engineering and Performance | Issue 14/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fabrication of electrically conductive parts by additive manufacturing is quite vital in the present day scenario. The wide use of these electrically conductive parts lies in telecommunication industries, wearable health devices, solar power devices, flexible displays etc. If these electrically conductive parts are flexible in nature the areas of application increase abruptly. It can be used to generate sensations in prosthetic body parts. In order to increase the electrical conductivity of 3D printed devices certain materials are added to the base materials in the form of fillers. The materials are generally allotropes of carbon like graphene, Carbon nanotubes, carbon fibers and graphite powder. In this work a comparative study is done on Ethylene Vinyl Acetate (EVA) material mixed with Graphene and Multi-Walled Carbon nanotubes (MWCNT). The material is added in varying composition to check its effect on electrical conductivity. The comparison of Graphene and MWCNT mixed EVA is done on the basis of flow behavior using MFI apparatus, dimensional stability of samples printed, presence and dispersion of filler material in EVA composition tested by FESEM EDX and XRD analysis and finally the electrical conductivity analysis by comparing the internal electrical resistance present.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Clifton Stephen, M.M. Shivamurthy, A.H.I. Mourad, R. Selvam, and B.H.S. Thimmappa, Low Velocity Impact Behavior of Fabric Reinforced Polymer Composites—A Review, Eng. Sci., 2022, 18, p 75–97. B. Clifton Stephen, M.M. Shivamurthy, A.H.I. Mourad, R. Selvam, and B.H.S. Thimmappa, Low Velocity Impact Behavior of Fabric Reinforced Polymer Composites—A Review, Eng. Sci., 2022, 18, p 75–97.
2.
go back to reference M. Lian, Y. Huang, Y. Liu, D. Jiang, Z. Wu, B. Li, and Q. Xu et al. (2022) An Overview of Regenerable Wood-Based Composites: Preparation and Applications for Flame Retardancy, Enhanced Mechanical Properties, Biomimicry, and Transparency Energy Saving, Adv. Compos. Hybrid Mater., 2022, 5, p 1612–1657.CrossRef M. Lian, Y. Huang, Y. Liu, D. Jiang, Z. Wu, B. Li, and Q. Xu et al. (2022) An Overview of Regenerable Wood-Based Composites: Preparation and Applications for Flame Retardancy, Enhanced Mechanical Properties, Biomimicry, and Transparency Energy Saving, Adv. Compos. Hybrid Mater., 2022, 5, p 1612–1657.CrossRef
3.
go back to reference G. Kamath, B. Mishra, S. Tiwari, A. Bhardwaj, S.S. Marar, S. Soni, R. Chauhan, and S.B. Anjappa, Experimental and Statistical Evaluation of Drilling Induced Damages in Glass Fiber Reinforced Polymer Composites-Taguchi Integrated Supervised Machine Learning Approach, Eng. Sci., 2022, 19, p 312–318. G. Kamath, B. Mishra, S. Tiwari, A. Bhardwaj, S.S. Marar, S. Soni, R. Chauhan, and S.B. Anjappa, Experimental and Statistical Evaluation of Drilling Induced Damages in Glass Fiber Reinforced Polymer Composites-Taguchi Integrated Supervised Machine Learning Approach, Eng. Sci., 2022, 19, p 312–318.
4.
5.
go back to reference N. Mohan, S. A. Kalam, R. Mahaveerakannan, M. Shah, J. S. Yadav, V. Sharma, P. S. Naik, and D. B. Narasimha, Statistical Evaluation of Machining Parameters in Drilling of Glass Laminate Aluminum Reinforced Epoxy Composites using Machine Learning Model. Eng. Sci. 20 (2022) N. Mohan, S. A. Kalam, R. Mahaveerakannan, M. Shah, J. S. Yadav, V. Sharma, P. S. Naik, and D. B. Narasimha, Statistical Evaluation of Machining Parameters in Drilling of Glass Laminate Aluminum Reinforced Epoxy Composites using Machine Learning Model. Eng. Sci. 20 (2022)
6.
go back to reference S.M. Shahabaz, S. Sharma, S. Nagaraja Shetty, D. Shetty, and M.C. Gowrishankar, Influence of Temperature on Mechanical Properties and Machining of Fibre Reinforced Polymer Composites: A Review, Eng. Sci., 2021, 16, p 26–46. S.M. Shahabaz, S. Sharma, S. Nagaraja Shetty, D. Shetty, and M.C. Gowrishankar, Influence of Temperature on Mechanical Properties and Machining of Fibre Reinforced Polymer Composites: A Review, Eng. Sci., 2021, 16, p 26–46.
7.
go back to reference J.C. de Macedo Neto, N.R. do Nascimento, R.H. de Bello, L.A. Verçosa, J.E. Neto, J.C. da Costa, and F. Rol, Kaolinite Review: Intercalation and Production of Polymer Nanocomposites, Eng. Sci., 2021, 17, p 28–44. J.C. de Macedo Neto, N.R. do Nascimento, R.H. de Bello, L.A. Verçosa, J.E. Neto, J.C. da Costa, and F. Rol, Kaolinite Review: Intercalation and Production of Polymer Nanocomposites, Eng. Sci., 2021, 17, p 28–44.
8.
go back to reference W. Jiang, D. Yutong, Y. Ji, Y. Zhou, P. Zhao, and Y. Deng Guang, Modernization of Traditional Chinese Condiments via Electrospun Polymeric Nanocomposites, ES Food Agrofor., 2022, 8, p 47–56. W. Jiang, D. Yutong, Y. Ji, Y. Zhou, P. Zhao, and Y. Deng Guang, Modernization of Traditional Chinese Condiments via Electrospun Polymeric Nanocomposites, ES Food Agrofor., 2022, 8, p 47–56.
9.
go back to reference D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, Su. Fengmei, C. Liu, and Y. Li et al., Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites, Nano-Micro Lett., 2022, 14(1), p 1–19.CrossRef D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, Su. Fengmei, C. Liu, and Y. Li et al., Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites, Nano-Micro Lett., 2022, 14(1), p 1–19.CrossRef
10.
go back to reference D. Fitz-Gerald and D. J. Boothe, Manufacturing and Characterization of Poly (Lactic Acid)/Carbon Black Conductive Composites for FDM Feedstock: An Exploratory Study. 2016, 152. D. Fitz-Gerald and D. J. Boothe, Manufacturing and Characterization of Poly (Lactic Acid)/Carbon Black Conductive Composites for FDM Feedstock: An Exploratory Study. 2016, 152.
11.
go back to reference D. Zindani and K. Kumar, An Insight into Additive Manufacturing of Fiber Reinforced Polymer Composite, Int. J. Lightweight Mater. Manuf., 2019, 2(4), p 267–278. D. Zindani and K. Kumar, An Insight into Additive Manufacturing of Fiber Reinforced Polymer Composite, Int. J. Lightweight Mater. Manuf., 2019, 2(4), p 267–278.
12.
go back to reference T. Gao, H. Rong, K. H. Mahmoud, J. Ruan, S. M. El-Bahy, A. A. Faheim, Y. Li, M. Huang, M. A. Nassan, and R. Zhao, Iron/Silicon Carbide Composites with Tunable High-Frequency Magnetic and Dielectric Properties for Potential Electromagnetic Wave Absorption, Adv. Compos. Hybrid Mater., 2022, 5, p 1158–1167.CrossRef T. Gao, H. Rong, K. H. Mahmoud, J. Ruan, S. M. El-Bahy, A. A. Faheim, Y. Li, M. Huang, M. A. Nassan, and R. Zhao, Iron/Silicon Carbide Composites with Tunable High-Frequency Magnetic and Dielectric Properties for Potential Electromagnetic Wave Absorption, Adv. Compos. Hybrid Mater., 2022, 5, p 1158–1167.CrossRef
13.
go back to reference T. Xin, S. Tang, F. Ji, L. Cui, B. He, X. Lin, X. Tian, H. Hou, Y. Zhao, and M. Ferry, Phase Transformations in an Ultralight BCC Mg Alloy during Anisothermal Ageing, Acta Mater., 2022, 239, p 118248.CrossRef T. Xin, S. Tang, F. Ji, L. Cui, B. He, X. Lin, X. Tian, H. Hou, Y. Zhao, and M. Ferry, Phase Transformations in an Ultralight BCC Mg Alloy during Anisothermal Ageing, Acta Mater., 2022, 239, p 118248.CrossRef
14.
go back to reference Y. Zhao, K. Liu, H. Hou, and L.-Q. Chen, Role of Interfacial Energy Anisotropy in Dendrite Orientation in Al-Zn Alloys: A Phase Field Study, Mater. Des., 2022, 216, p 110555.CrossRef Y. Zhao, K. Liu, H. Hou, and L.-Q. Chen, Role of Interfacial Energy Anisotropy in Dendrite Orientation in Al-Zn Alloys: A Phase Field Study, Mater. Des., 2022, 216, p 110555.CrossRef
15.
go back to reference J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin, M. Huang, J. Guo, S. A. Alsareii, H. Algadi, and M. Kathiresan, Waterborne Polyurethane and its Nanocomposites: A Mini-Review for Anti-Corrosion Coating, Flame Retardancy, and Biomedical Applications, Adv. Compos. Hybrid Mater., 2022, 5, p 641–650.CrossRef J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin, M. Huang, J. Guo, S. A. Alsareii, H. Algadi, and M. Kathiresan, Waterborne Polyurethane and its Nanocomposites: A Mini-Review for Anti-Corrosion Coating, Flame Retardancy, and Biomedical Applications, Adv. Compos. Hybrid Mater., 2022, 5, p 641–650.CrossRef
16.
go back to reference H.K. Sezer and O. Eren, FDM 3D Printing of MWCNT Re-Inforced ABS Nano-Composite Parts with Enhanced Mechanical and Electrical Properties, J. Manuf. Process., 2019, 37, p 339–347.CrossRef H.K. Sezer and O. Eren, FDM 3D Printing of MWCNT Re-Inforced ABS Nano-Composite Parts with Enhanced Mechanical and Electrical Properties, J. Manuf. Process., 2019, 37, p 339–347.CrossRef
17.
go back to reference N. Kumar, P. K. Jain, P. Tandon, and P. Mohan Pandey, 3D Printing of Flexible Parts Using EVA Material, Mater. Phys. Mech., 2018, 37(2), p 124–132. N. Kumar, P. K. Jain, P. Tandon, and P. Mohan Pandey, 3D Printing of Flexible Parts Using EVA Material, Mater. Phys. Mech., 2018, 37(2), p 124–132.
18.
go back to reference N. Kumar, P.K. Jain, P. Tandon, and P. Mohan Pandey, Additive Manufacturing of Flexible Electrically Conductive Polymer Composites via CNC-Assisted Fused Layer Modeling Process, J. Braz. Soc. Mech. Scie. Eng., 2018, 40(4), p 175.CrossRef N. Kumar, P.K. Jain, P. Tandon, and P. Mohan Pandey, Additive Manufacturing of Flexible Electrically Conductive Polymer Composites via CNC-Assisted Fused Layer Modeling Process, J. Braz. Soc. Mech. Scie. Eng., 2018, 40(4), p 175.CrossRef
19.
go back to reference V.D. Punetha, S. Rana, H.J. Yoo, A. Chaurasia, J.T. McLeskey Jr., M.S. Ramasamy, N.G. Sahoo, and J.W. Cho, Functionalization of Carbon Nanomaterials for Advanced Polymer Nanocomposites: A Comparison Study Between CNT and Graphene, Prog. Polym. Sci., 2018, 67, p 1–47.CrossRef V.D. Punetha, S. Rana, H.J. Yoo, A. Chaurasia, J.T. McLeskey Jr., M.S. Ramasamy, N.G. Sahoo, and J.W. Cho, Functionalization of Carbon Nanomaterials for Advanced Polymer Nanocomposites: A Comparison Study Between CNT and Graphene, Prog. Polym. Sci., 2018, 67, p 1–47.CrossRef
20.
go back to reference X. Xu, F. Yao, O. A. Abu Ali, W. Xie, S. F. Mahmoud, P. Xie, and S. M. El-Bahy et al., Adjustable Core-Sheath Architecture of Polyaniline-Decorated Hollow Carbon Nanofiber Nanocomposites with Negative Permittivity for Superb Electromagnetic Interference Shielding, Adv. Compos. Hybrid Mater., 2022, 5(3), p 1–10.CrossRef X. Xu, F. Yao, O. A. Abu Ali, W. Xie, S. F. Mahmoud, P. Xie, and S. M. El-Bahy et al., Adjustable Core-Sheath Architecture of Polyaniline-Decorated Hollow Carbon Nanofiber Nanocomposites with Negative Permittivity for Superb Electromagnetic Interference Shielding, Adv. Compos. Hybrid Mater., 2022, 5(3), p 1–10.CrossRef
21.
go back to reference P. Wang, T. Song, H. M. Abo-Dief, J. Song, A. K. Alanazi, B. Fan, and M. Huang et al., Effect of Carbon Nanotubes on the Interface Evolution and Dielectric Properties of Polylactic Acid/Ethylene–Vinyl Acetate Copolymer Nanocomposites, Adv. Compos. Hybrid Mater., 2022, 5, p 1–11.CrossRef P. Wang, T. Song, H. M. Abo-Dief, J. Song, A. K. Alanazi, B. Fan, and M. Huang et al., Effect of Carbon Nanotubes on the Interface Evolution and Dielectric Properties of Polylactic Acid/Ethylene–Vinyl Acetate Copolymer Nanocomposites, Adv. Compos. Hybrid Mater., 2022, 5, p 1–11.CrossRef
22.
go back to reference Y. He, M. Zhou, M. H. H. Mahmoud, X. Lu, G. He, L. Zhang, and M. Huang et al., Multifunctional Wearable Strain/Pressure Sensor Based on Conductive Carbon Nanotubes/Silk Nonwoven Fabric with High Durability and Low Detection Limit, Adv. Compos. Hybrid Mater., 2022, 5(3), p 1939–1950.CrossRef Y. He, M. Zhou, M. H. H. Mahmoud, X. Lu, G. He, L. Zhang, and M. Huang et al., Multifunctional Wearable Strain/Pressure Sensor Based on Conductive Carbon Nanotubes/Silk Nonwoven Fabric with High Durability and Low Detection Limit, Adv. Compos. Hybrid Mater., 2022, 5(3), p 1939–1950.CrossRef
23.
go back to reference M. Liu, H. Wu, Y. Wu, P. Xie, R. A. Pashameah, H. M. Abo-Dief, and S. M. El-Bahy et al., The Weakly Negative Permittivity with Low-Frequency-Dispersion Behavior in Percolative Carbon Nanotubes/Epoxy Nanocomposites at Radio-Frequency Range, Adv. Compos. Hybrid Mater., 2022, 5, p 1–10.CrossRef M. Liu, H. Wu, Y. Wu, P. Xie, R. A. Pashameah, H. M. Abo-Dief, and S. M. El-Bahy et al., The Weakly Negative Permittivity with Low-Frequency-Dispersion Behavior in Percolative Carbon Nanotubes/Epoxy Nanocomposites at Radio-Frequency Range, Adv. Compos. Hybrid Mater., 2022, 5, p 1–10.CrossRef
24.
go back to reference V. Francis and P.K. Jain, Advances in Nanocomposite Materials for Additive Manufacturing, Int. J. Rapid Manuf., 2015, 5(3/4), p 215–233.CrossRef V. Francis and P.K. Jain, Advances in Nanocomposite Materials for Additive Manufacturing, Int. J. Rapid Manuf., 2015, 5(3/4), p 215–233.CrossRef
25.
go back to reference N. Vidakis, A. Maniadi, M. Petousis, M. Vamvakaki, G. Kenanakis, and E. Koudoumas, Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites, J. Mater. Eng. Perform., 2020, 29, p 1–10.CrossRef N. Vidakis, A. Maniadi, M. Petousis, M. Vamvakaki, G. Kenanakis, and E. Koudoumas, Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites, J. Mater. Eng. Perform., 2020, 29, p 1–10.CrossRef
26.
go back to reference S. Ghoshal, Polymer/Carbon Nanotubes (CNT) Nanocomposites Processing Using Additive Manufacturing (Three-Dimensional Printing) Technique: An Overview, Fibers, 2017, 5(4), p 40.CrossRef S. Ghoshal, Polymer/Carbon Nanotubes (CNT) Nanocomposites Processing Using Additive Manufacturing (Three-Dimensional Printing) Technique: An Overview, Fibers, 2017, 5(4), p 40.CrossRef
27.
go back to reference A. Dorigato, V. Moretti, S. Dul, S.H. Unterberger, and A. Pegoretti, Electrically Conductive Nanocomposites for Fused Deposition Modelling, Synth. Met., 2017, 226, p 7–14.CrossRef A. Dorigato, V. Moretti, S. Dul, S.H. Unterberger, and A. Pegoretti, Electrically Conductive Nanocomposites for Fused Deposition Modelling, Synth. Met., 2017, 226, p 7–14.CrossRef
28.
go back to reference M.A. Caminero, J.M. Chacón, E. García-Plaza, P.J. Núñez, J.M. Reverte, and J.P. Becar, Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture, Polymers, 2019, 11(5), p 799.CrossRef M.A. Caminero, J.M. Chacón, E. García-Plaza, P.J. Núñez, J.M. Reverte, and J.P. Becar, Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture, Polymers, 2019, 11(5), p 799.CrossRef
29.
go back to reference N. Bagotia, V. Choudhary, and D.K. Sharma, A Review on the Mechanical, Electrical and EMI Shielding Properties of Carbon Nanotubes and Graphene Reinforced Polycarbonate Nanocomposites, Polym. Adv. Technol., 2018, 29(6), p 1547–1567.CrossRef N. Bagotia, V. Choudhary, and D.K. Sharma, A Review on the Mechanical, Electrical and EMI Shielding Properties of Carbon Nanotubes and Graphene Reinforced Polycarbonate Nanocomposites, Polym. Adv. Technol., 2018, 29(6), p 1547–1567.CrossRef
30.
go back to reference B. Wang, Z. Zhang, Z. Pei, J. Qiu, and S. Wang, Current Progress on the 3D Printing of Thermosets, Adv. Compos. Hybrid Mater., 2020, 3(4), p 462–472.CrossRef B. Wang, Z. Zhang, Z. Pei, J. Qiu, and S. Wang, Current Progress on the 3D Printing of Thermosets, Adv. Compos. Hybrid Mater., 2020, 3(4), p 462–472.CrossRef
31.
go back to reference J. Yang, B. Zhou, D. Han, N. Cui, B. Li, J. Shen, Z. Zhang, and D. Ai, High-Precision Three-Dimensional Printing in a Flexible, Low-Cost and Versatile Way: A Review, ES Mater. Manuf., 2021, 15, p 1–13. J. Yang, B. Zhou, D. Han, N. Cui, B. Li, J. Shen, Z. Zhang, and D. Ai, High-Precision Three-Dimensional Printing in a Flexible, Low-Cost and Versatile Way: A Review, ES Mater. Manuf., 2021, 15, p 1–13.
32.
go back to reference A. Manoj and C. Ramesh, Biodegradable Filament for 3D Printing Process: A Review, Eng. Sci., 2022, 18, p 11–19. A. Manoj and C. Ramesh, Biodegradable Filament for 3D Printing Process: A Review, Eng. Sci., 2022, 18, p 11–19.
33.
go back to reference X. Xia, Xu. Xiaorong, C. Lin, Y. Yang, L. Zeng, Y. Zheng, and Wu. Xinru et al., Microalgal-Immobilized Biocomposite Scaffold Fabricated by Fused Deposition Modeling 3D Printing Technology for Dyes Removal, ES Mater. Manuf., 2020, 7(8), p 40–50. X. Xia, Xu. Xiaorong, C. Lin, Y. Yang, L. Zeng, Y. Zheng, and Wu. Xinru et al., Microalgal-Immobilized Biocomposite Scaffold Fabricated by Fused Deposition Modeling 3D Printing Technology for Dyes Removal, ES Mater. Manuf., 2020, 7(8), p 40–50.
34.
go back to reference Y. Zhao, F. Liu, Z. Zhao, P. Bai, A. Yong Ma, G.A.M. Alhadhrami, Z.L. Mersal, M.M. Ibrahim, and Z.M. El-Bahy, Direct Ink Printing Reduced Graphene Oxide/KCu7S4 Electrodes for High-Performance Supercapacitors, Adv. Compos. Hybrid Mater., 2022, 5(2), p 1516–1526.CrossRef Y. Zhao, F. Liu, Z. Zhao, P. Bai, A. Yong Ma, G.A.M. Alhadhrami, Z.L. Mersal, M.M. Ibrahim, and Z.M. El-Bahy, Direct Ink Printing Reduced Graphene Oxide/KCu7S4 Electrodes for High-Performance Supercapacitors, Adv. Compos. Hybrid Mater., 2022, 5(2), p 1516–1526.CrossRef
35.
go back to reference Y. Zhao, F. Liu, K. Zhu, S. Maganti, Z. Zhao, P. Bai, Three-Dimensional Printing of the Copper Sulfate Hybrid Composites for Supercapacitor Electrodes with Ultra-High Areal and Volumetric Capacitances, Adv. Compos. Hybrid Mater., 2022, 5, p 1–11.CrossRef Y. Zhao, F. Liu, K. Zhu, S. Maganti, Z. Zhao, P. Bai, Three-Dimensional Printing of the Copper Sulfate Hybrid Composites for Supercapacitor Electrodes with Ultra-High Areal and Volumetric Capacitances, Adv. Compos. Hybrid Mater., 2022, 5, p 1–11.CrossRef
36.
go back to reference H. Zhu, Y. Wang, M. Qu, Y. Pan, G. Zheng, K. Dai, and M. Huang et al., Electrospun Poly (Vinyl Alcohol)/Silica Film for Radiative Cooling, Adv. Compos. Hybrid Mater., 2022, 5, p 1–10.CrossRef H. Zhu, Y. Wang, M. Qu, Y. Pan, G. Zheng, K. Dai, and M. Huang et al., Electrospun Poly (Vinyl Alcohol)/Silica Film for Radiative Cooling, Adv. Compos. Hybrid Mater., 2022, 5, p 1–10.CrossRef
37.
go back to reference A. Arun, P. Malrautu, A. Laha, and S. Ramakrishna, Gelatin Nanofibers in Drug Delivery Systems and Tissue Engineering, Eng. Sci., 2021, 16, p 71–81. A. Arun, P. Malrautu, A. Laha, and S. Ramakrishna, Gelatin Nanofibers in Drug Delivery Systems and Tissue Engineering, Eng. Sci., 2021, 16, p 71–81.
38.
go back to reference X. Chang, L. Chen, J. Chen, Y. Zhu, and Z. Guo, Advances in Transparent and Stretchable Strain Sensors, Adv. Compos. Hybrid Mater., 2021, 4(3), p 435–450.CrossRef X. Chang, L. Chen, J. Chen, Y. Zhu, and Z. Guo, Advances in Transparent and Stretchable Strain Sensors, Adv. Compos. Hybrid Mater., 2021, 4(3), p 435–450.CrossRef
39.
go back to reference G. Li, L. Wang, X. Lei, Z. Peng, T. Wan, S. Maganti, and M. Huang et al., Flexible, Yet Robust Polyaniline Coated Foamed Polylactic Acid Composite Electrodes for High-Performance Supercapacitors, Adv. Compos. Hybrid Mater., 2022, 5(2), p 853–863.CrossRef G. Li, L. Wang, X. Lei, Z. Peng, T. Wan, S. Maganti, and M. Huang et al., Flexible, Yet Robust Polyaniline Coated Foamed Polylactic Acid Composite Electrodes for High-Performance Supercapacitors, Adv. Compos. Hybrid Mater., 2022, 5(2), p 853–863.CrossRef
40.
go back to reference S. Cao, W. Ge, Y. Yang, Q. Huang, and X. Wang, High Strength, Flexible, and Conductive Graphene/Polypropylene Fiber Paper Fabricated via Papermaking Process, Adv. Compos. Hybrid Mater., 2022, 5(1), p 104–112.CrossRef S. Cao, W. Ge, Y. Yang, Q. Huang, and X. Wang, High Strength, Flexible, and Conductive Graphene/Polypropylene Fiber Paper Fabricated via Papermaking Process, Adv. Compos. Hybrid Mater., 2022, 5(1), p 104–112.CrossRef
41.
go back to reference W. Zhao, L. Chen, Hu. Sanming, Z. Shi, X. Gao, and V.V. Silberschmidt, Printed Hydrogel Nanocomposites: Fine-Tuning Nanostructure for Anisotropic Mechanical and Conductive Properties, Adv. Compos. Hybrid Mater., 2020, 3(3), p 315–324.CrossRef W. Zhao, L. Chen, Hu. Sanming, Z. Shi, X. Gao, and V.V. Silberschmidt, Printed Hydrogel Nanocomposites: Fine-Tuning Nanostructure for Anisotropic Mechanical and Conductive Properties, Adv. Compos. Hybrid Mater., 2020, 3(3), p 315–324.CrossRef
42.
go back to reference J. Chen, Y. Zhu, Z. Guo, and A.G. Nasibulin, Recent Progress on Thermo-Electrical Properties of Conductive Polymer Composites and Their Application in Temperature Sensors, Eng. Sci., 2020, 12(19), p 13–22. J. Chen, Y. Zhu, Z. Guo, and A.G. Nasibulin, Recent Progress on Thermo-Electrical Properties of Conductive Polymer Composites and Their Application in Temperature Sensors, Eng. Sci., 2020, 12(19), p 13–22.
Metadata
Title
Investigation on 3D Printing of Graphene and Multi-walled Carbon Nanotube Mixed Flexible Electrically Conductive Parts Using Fused Filament Fabrication
Authors
Arpit Bajpai
Prashant Kumar Jain
Publication date
28-10-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 14/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07574-x

Premium Partners