Skip to main content
Top
Published in: Journal of Polymer Research 6/2019

01-06-2019 | ORIGINAL PAPER

Investigation on electrical tuneable separation properties for phase inversion polyaniline membranes doped in various acids

Authors: Rosiah Rohani, Izzati Izni Yusoff

Published in: Journal of Polymer Research | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrically tuneable polyaniline (PANI) membranes were fabricated via phase inversion and were doped primarily in various acids namely anthraquinone sulfonic acid (ASA), dodecylbenzene sulfonic acid (DBSA), maleic acid (MA) and poly(methyl vinyl ether-alt-maleic acid) (PMVEA) in comparison with secondarily HCl-doped PANI membrane as the pristine ones. It was found that the addition of different dopants in the PANI matrix changed the thickness of the membrane skin structure. From the dynamic contact angle (DCA) analysis, the PANI-ASA and pristine PANI membranes had the greatest permeation tuneability with a faster permeation rate under electric potential. For the effect of tuneable filtration, by using a modified cross-flow membrane filtration system, ASA showed the highest flux tuneability with a tuneable MWCO in the low UF range at an applied voltage of 7 V rather than at 0 V. Accordingly, the electrical tuneability assessment of the membranes has successfully demonstrated the proof of concept that the fabricated PANI membranes doped at various acids could have a different tuneable MWCO, selectivity and/or flux in a pressure filtration system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yusoff II, Rohani R, Zaman NK, Junaidi MUM, Mohammad AW, Zainal Z (2019) Durable pressure filtration membranes based on polyaniline–polyimide P84 blends. Polym Eng Sci 2019:E83–E92 Yusoff II, Rohani R, Zaman NK, Junaidi MUM, Mohammad AW, Zainal Z (2019) Durable pressure filtration membranes based on polyaniline–polyimide P84 blends. Polym Eng Sci 2019:E83–E92
2.
go back to reference Xu L, Shahid S, Holda AK, Emanuelsson EAC, Patterson DA (2018) Stimuli responsive conductive polyaniline membrane: in-filtration electrical tuneability of flux and MWCO. J Membr Sci 552:153–166CrossRef Xu L, Shahid S, Holda AK, Emanuelsson EAC, Patterson DA (2018) Stimuli responsive conductive polyaniline membrane: in-filtration electrical tuneability of flux and MWCO. J Membr Sci 552:153–166CrossRef
3.
go back to reference Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18(1–3):285–290CrossRef Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18(1–3):285–290CrossRef
4.
go back to reference Yusoff II, Rohani R, Mohammad AW (2016) Pressure driven conducting polymer membranes derived from layer-by-layer formation and characterization: a. Rev J Eng Sci Technol 11:1183–1206 Yusoff II, Rohani R, Mohammad AW (2016) Pressure driven conducting polymer membranes derived from layer-by-layer formation and characterization: a. Rev J Eng Sci Technol 11:1183–1206
5.
go back to reference Ayad MM, Zaki EA (2008) Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films. Eur Polym J 44:3741–3747CrossRef Ayad MM, Zaki EA (2008) Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films. Eur Polym J 44:3741–3747CrossRef
6.
go back to reference Gustavo MN, Marcia LAT (2008) Structure of polyaniline formed in different inorganic porous materials: a spectroscopic study. Eur Polym J 44:3501–3511CrossRef Gustavo MN, Marcia LAT (2008) Structure of polyaniline formed in different inorganic porous materials: a spectroscopic study. Eur Polym J 44:3501–3511CrossRef
7.
go back to reference Stassen I, Sloboda T, Hambitzer G (1995) Electrically modulated membrane permeability. Synth Met 71:2243–2244CrossRef Stassen I, Sloboda T, Hambitzer G (1995) Electrically modulated membrane permeability. Synth Met 71:2243–2244CrossRef
8.
go back to reference Sairam M, Nataraj SK, Aminabhavi TM, Roy S, Madhusoodana CD (2006) Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep Purif Rev 35:249–283CrossRef Sairam M, Nataraj SK, Aminabhavi TM, Roy S, Madhusoodana CD (2006) Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep Purif Rev 35:249–283CrossRef
9.
go back to reference Price WE, Too C, Wallace GG, Zhou D (1999) Development of membrane systems based on conducting polymers. Synth Met 102:1338–1341CrossRef Price WE, Too C, Wallace GG, Zhou D (1999) Development of membrane systems based on conducting polymers. Synth Met 102:1338–1341CrossRef
10.
go back to reference Burgmayer P, Murray RW (1983) Faster Ion Gate Membranes. J Electroanal Chem 147:339–344CrossRef Burgmayer P, Murray RW (1983) Faster Ion Gate Membranes. J Electroanal Chem 147:339–344CrossRef
11.
go back to reference Davey JM, Ralph SF, Too CO, Wallace GG (1999) Synthesis, characterisation and ion transport studies on polypyrrole/polyvinylphosphate conducting polymer materials. Synth Met 99(3):191–199CrossRef Davey JM, Ralph SF, Too CO, Wallace GG (1999) Synthesis, characterisation and ion transport studies on polypyrrole/polyvinylphosphate conducting polymer materials. Synth Met 99(3):191–199CrossRef
12.
go back to reference Ariza MJ, Otero TF (2005) Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film. Colloids Surf A Physicochem Eng Asp 270-271:226–231CrossRef Ariza MJ, Otero TF (2005) Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film. Colloids Surf A Physicochem Eng Asp 270-271:226–231CrossRef
13.
go back to reference Kiefer R, Kilmartin PA, Bowmaker GA, Cooney RP, Travas-Sejdic J (2007) Actuation of polypyrrole films in propylene carbonate electrolytes. Sensors Actuators B Chem 125(2):628–634CrossRef Kiefer R, Kilmartin PA, Bowmaker GA, Cooney RP, Travas-Sejdic J (2007) Actuation of polypyrrole films in propylene carbonate electrolytes. Sensors Actuators B Chem 125(2):628–634CrossRef
14.
go back to reference Su TM, Ball IJ, Conklin JA, Huang S-C, Larson RK, Nguyen SL, Lew BM, Kaner RB (1997) Polyaniline/polyimide blends for pervaporation and gas separation studies. Synth Met 84(1–3):801–802CrossRef Su TM, Ball IJ, Conklin JA, Huang S-C, Larson RK, Nguyen SL, Lew BM, Kaner RB (1997) Polyaniline/polyimide blends for pervaporation and gas separation studies. Synth Met 84(1–3):801–802CrossRef
15.
go back to reference Chapman P, Loh XX, Livingston AG, Li K, Oliveira TAC (2008) Polyaniline membrane for the dehydration of tetrahydrofuran by pervaporation. J Membr Sci 309:102–111CrossRef Chapman P, Loh XX, Livingston AG, Li K, Oliveira TAC (2008) Polyaniline membrane for the dehydration of tetrahydrofuran by pervaporation. J Membr Sci 309:102–111CrossRef
16.
go back to reference Pile DL, Hillier AC (2002) Electrochemically modulated transport through a conducting polymer membrane. J Membr Sci 208:119–131CrossRef Pile DL, Hillier AC (2002) Electrochemically modulated transport through a conducting polymer membrane. J Membr Sci 208:119–131CrossRef
17.
go back to reference Patterson DA, Lau LY, Roengpithya C, Gibbins EJ, Livingston AG (2008) Membrane selectivity in the organic solvent nanofiltration of trialkylamine bases. Desalination 218(1–3):248–256CrossRef Patterson DA, Lau LY, Roengpithya C, Gibbins EJ, Livingston AG (2008) Membrane selectivity in the organic solvent nanofiltration of trialkylamine bases. Desalination 218(1–3):248–256CrossRef
18.
go back to reference Yusoff II, Rohani R, Mohammad AW (2016) Investigation of the formation characteristics of polyaniline and its application in forming free-standing pressure filtration membranes. J Polym Res 23:1–13CrossRef Yusoff II, Rohani R, Mohammad AW (2016) Investigation of the formation characteristics of polyaniline and its application in forming free-standing pressure filtration membranes. J Polym Res 23:1–13CrossRef
19.
go back to reference Idris A, Zain NM (2006) Effect of heat treatment on the performance and structural details of polyethersulfone ultrafiltration membranes. J Teknol 44:27–40 Idris A, Zain NM (2006) Effect of heat treatment on the performance and structural details of polyethersulfone ultrafiltration membranes. J Teknol 44:27–40
20.
go back to reference Kim KJ, Fanen AG, Ben Aimb R, Liub MG, Jonsson G, TessaroC IC, Broekd AP, Bargemand D (1994) A comparative study of techniques used for porous membrane characterization: pore characterization. J Membr Sci 87:35–46CrossRef Kim KJ, Fanen AG, Ben Aimb R, Liub MG, Jonsson G, TessaroC IC, Broekd AP, Bargemand D (1994) A comparative study of techniques used for porous membrane characterization: pore characterization. J Membr Sci 87:35–46CrossRef
21.
go back to reference Wang X-L, Shang W-J, Wang D-X, Wu L, Tu C-H (2009) Characterization and applications of nanofiltration membranes: state of the art. Desalination 236:316–326CrossRef Wang X-L, Shang W-J, Wang D-X, Wu L, Tu C-H (2009) Characterization and applications of nanofiltration membranes: state of the art. Desalination 236:316–326CrossRef
22.
go back to reference Loh XX, Sairam M, Bismarck A, Steinke JHG, Livingston AG, Li K (2009) Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. J Membr Sci 326:635–642CrossRef Loh XX, Sairam M, Bismarck A, Steinke JHG, Livingston AG, Li K (2009) Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. J Membr Sci 326:635–642CrossRef
23.
go back to reference Zhao S, Wang Z, Wang J, Yang S, Wang S (2011) PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J Membr Sci 376(1–2):83–95CrossRef Zhao S, Wang Z, Wang J, Yang S, Wang S (2011) PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J Membr Sci 376(1–2):83–95CrossRef
24.
go back to reference Sairam M, Loh XX, Li K, Bismarck A, Steinke JHG, Livingston AG (2009) Nanoporous asymmetric polyaniline films for filtration of organic solvents. J Membr Sci 330:166–174CrossRef Sairam M, Loh XX, Li K, Bismarck A, Steinke JHG, Livingston AG (2009) Nanoporous asymmetric polyaniline films for filtration of organic solvents. J Membr Sci 330:166–174CrossRef
25.
go back to reference Lira LM, SICd T (2005) Conducting polymer-hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks. Electrochem Commun 7(7):717–723CrossRef Lira LM, SICd T (2005) Conducting polymer-hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks. Electrochem Commun 7(7):717–723CrossRef
26.
go back to reference Richard B, Nigel JC, Sarah HC (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353CrossRef Richard B, Nigel JC, Sarah HC (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353CrossRef
27.
go back to reference Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44(37):6009–6012CrossRef Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44(37):6009–6012CrossRef
28.
go back to reference Schaep J (1999) Nanofiltration for the removal of ionic components from water. Ph.D. Thesis, Katholieke Universiteit Leuven, Heverlee, Belgium Schaep J (1999) Nanofiltration for the removal of ionic components from water. Ph.D. Thesis, Katholieke Universiteit Leuven, Heverlee, Belgium
29.
go back to reference Crocker P (1997) Super stable nanofiltration gives almost total recovery. Manuf Chem:29–30 Crocker P (1997) Super stable nanofiltration gives almost total recovery. Manuf Chem:29–30
30.
go back to reference Yusoff II, Rohani R, Mohammad AW (2017) Molecular weight cut-off determination of pressure filtration membranes via colorimetric detection method. Malays J Anal Sci 21:484–495CrossRef Yusoff II, Rohani R, Mohammad AW (2017) Molecular weight cut-off determination of pressure filtration membranes via colorimetric detection method. Malays J Anal Sci 21:484–495CrossRef
31.
go back to reference Rohani R, Hyland M, Patterson D (2011) A refined one-filtration method for aqueous based Nanofiltration and UltraFiltration membrane molecular weight cut-off determination using polyethylene glycols. J Membr Sci 382(1–2):278–290CrossRef Rohani R, Hyland M, Patterson D (2011) A refined one-filtration method for aqueous based Nanofiltration and UltraFiltration membrane molecular weight cut-off determination using polyethylene glycols. J Membr Sci 382(1–2):278–290CrossRef
32.
go back to reference Yin W, Ruckenstein E (2000) Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synth Met 108:39–46CrossRef Yin W, Ruckenstein E (2000) Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synth Met 108:39–46CrossRef
34.
go back to reference Rohani R, Yusoff II, Efdi FAM, Junaidi MUM (2017) Polyaniline composite membranes synthesis in presence of various acid dopants for pressure filtration. J Kejuruteraan (UKM Eng J) 29:1–13CrossRef Rohani R, Yusoff II, Efdi FAM, Junaidi MUM (2017) Polyaniline composite membranes synthesis in presence of various acid dopants for pressure filtration. J Kejuruteraan (UKM Eng J) 29:1–13CrossRef
35.
go back to reference Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810CrossRef Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810CrossRef
36.
go back to reference Terlemezyan L, Mokreva P, Tsocheva D, Peneva S, Berovsky K, Troev T (2008) Detection of free volumes in polyaniline complexes with various acids by using positron lifetime spectroscopy. Radiat Phys Chem 77:591–596CrossRef Terlemezyan L, Mokreva P, Tsocheva D, Peneva S, Berovsky K, Troev T (2008) Detection of free volumes in polyaniline complexes with various acids by using positron lifetime spectroscopy. Radiat Phys Chem 77:591–596CrossRef
37.
go back to reference Green DW, Perry RE (1984) Perry's chemical Engineer's handbook. 8th Edition Ed. The McGraw-Hill Companies, Inc. Green DW, Perry RE (1984) Perry's chemical Engineer's handbook. 8th Edition Ed. The McGraw-Hill Companies, Inc.
38.
go back to reference Ball IJ, Huang S-C, Su TM, Kaner RB (1997) Permselectivity and temperature-dependent permeability of polyaniline membranes. Synth Met 84:799–800CrossRef Ball IJ, Huang S-C, Su TM, Kaner RB (1997) Permselectivity and temperature-dependent permeability of polyaniline membranes. Synth Met 84:799–800CrossRef
39.
go back to reference Ho KC, Teow YH, Mohammad AW, Ang WL, Lee PH (2018) Development of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposite conductive membranes for electrically enhanced fouling mitigation. J Membr Sci 552:189–201CrossRef Ho KC, Teow YH, Mohammad AW, Ang WL, Lee PH (2018) Development of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposite conductive membranes for electrically enhanced fouling mitigation. J Membr Sci 552:189–201CrossRef
40.
go back to reference Chung YT, Ng LY, Mohammad AW (2014) Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting: optimization through response surface methodology approach. J Ind Eng Chem 20:1549–1557CrossRef Chung YT, Ng LY, Mohammad AW (2014) Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting: optimization through response surface methodology approach. J Ind Eng Chem 20:1549–1557CrossRef
41.
go back to reference See-Toh YH, Silva M, Livingston A (2008) Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes. J Membr Sci 324:220–232CrossRef See-Toh YH, Silva M, Livingston A (2008) Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes. J Membr Sci 324:220–232CrossRef
42.
go back to reference Soroko I, Bhole Y, Livingston AG (2011) Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem 13:162–168CrossRef Soroko I, Bhole Y, Livingston AG (2011) Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem 13:162–168CrossRef
Metadata
Title
Investigation on electrical tuneable separation properties for phase inversion polyaniline membranes doped in various acids
Authors
Rosiah Rohani
Izzati Izni Yusoff
Publication date
01-06-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1796-3

Other articles of this Issue 6/2019

Journal of Polymer Research 6/2019 Go to the issue

Premium Partners