Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

05-12-2022 | Technical Article

Investigation on Hot Deformation and Processing Parameter Optimization of Ti48Al2Cr2Nb Alloy with Bimodal Grain Size Distribution Fabricated by Powder Metallurgy

Authors: Jiahe Mei, Ying Han, Yibo Ren, Zhenxin Duan, Hua Chen, Weiwei Zhu, Xu Ran

Published in: Journal of Materials Engineering and Performance

Login to get access
share
SHARE

Abstract

The deformation behavior of Ti-48Al-2Cr-2Nb alloy with bimodal grain structure was studied using isothermal compression tests in the temperature range of 950-1100 °C and strain rate range of 0.001-0.1 s−1. The results show that the flow stress is greatly affected by the deformation temperature and strain rate, and decreases with decreasing strain rate and increasing temperature. All flow stress curves exhibit single peak characteristics, indicating that DRX is the main softening mechanism. The Arrhenius constitutive equation is established according to the relationship among flow stress data, strain rate and temperature. The activation energy for hot deformation and stress index are determined as 390.543 kJ·mol−1 and 2.573, respectively. According to the theory of dynamic material model, the hot processing maps are constructed and the stability and instability regions are identified. The peak power dissipation occurs in the regions of 960-1025 °C/0.001-0.005 s−1 and 1085-1100 °C/0.001-0.006 s−1, which suggests that these two regions can be regarded as the optimum processing window for the alloy.
Literature
1.
go back to reference Z.Q. Li, L. Xiao, B.H. Li, and X.F. Wang, Review of Study on Advanced Light Alloy Materials and Forming Technique in Spaceflight Industry, Aerosp. Shanghai, 2019, 36(2), p 9–21. Z.Q. Li, L. Xiao, B.H. Li, and X.F. Wang, Review of Study on Advanced Light Alloy Materials and Forming Technique in Spaceflight Industry, Aerosp. Shanghai, 2019, 36(2), p 9–21.
2.
go back to reference C. Rhines and M. Pettles, Titanium and Titanium Alloys, Chemical Industry Press, 2005 C. Rhines and M. Pettles, Titanium and Titanium Alloys, Chemical Industry Press, 2005
3.
go back to reference S.K. Vajpai and K. Ameyama, A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Ti-rich TiAl-Based Alloys from Pre-Alloyed Powders, Intermetallics, 2013, 42, p 146–155. CrossRef S.K. Vajpai and K. Ameyama, A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Ti-rich TiAl-Based Alloys from Pre-Alloyed Powders, Intermetallics, 2013, 42, p 146–155. CrossRef
4.
go back to reference X.M. Sui, J. Hu, L. Zhang, W. Zhao, and W.P. Zhang, Research Progress of High Temperature Oxidation Resistance Coating on Titanium Alloy, Surf. Technol., 2020, 49(10), p 21–38. X.M. Sui, J. Hu, L. Zhang, W. Zhao, and W.P. Zhang, Research Progress of High Temperature Oxidation Resistance Coating on Titanium Alloy, Surf. Technol., 2020, 49(10), p 21–38.
5.
go back to reference X.H. Li and S.L. Yang, The Progress of Preparation and Processing Technology of Ti-Al Alloy, Mater. Rev., 2011, 25(4), p 94–100. X.H. Li and S.L. Yang, The Progress of Preparation and Processing Technology of Ti-Al Alloy, Mater. Rev., 2011, 25(4), p 94–100.
6.
go back to reference V. Samarov, D. Seliverstov, and H. Francis, Fabrication of Near-Net-Shape Cost-Effective Titanium Components by Use of Prealloyed Powders and Hot Isostatic Pressing, in Titanium Powder Metallurgy (2015), p. 313–336 V. Samarov, D. Seliverstov, and H. Francis, Fabrication of Near-Net-Shape Cost-Effective Titanium Components by Use of Prealloyed Powders and Hot Isostatic Pressing, in Titanium Powder Metallurgy (2015), p. 313–336
7.
go back to reference Z.P. Wan, Y. Sun, L.X. Hu, and H. Yu, Experimental Study and Numerical Simulation of Dynamic Recrystallization Behavior of TiAl-Based Alloy, Mater. Des., 2017, 122, p 11–20. CrossRef Z.P. Wan, Y. Sun, L.X. Hu, and H. Yu, Experimental Study and Numerical Simulation of Dynamic Recrystallization Behavior of TiAl-Based Alloy, Mater. Des., 2017, 122, p 11–20. CrossRef
8.
go back to reference Y. Sun, Z.P. Wan, L.X. Hu, and J.S. Ren, Characterization of Hot Processing Parameters of Powder Metallurgy TiAl-Based Alloy Based on the Activation Energy Map and Processing Map, Mater. Des., 2015, 86, p 922–932. CrossRef Y. Sun, Z.P. Wan, L.X. Hu, and J.S. Ren, Characterization of Hot Processing Parameters of Powder Metallurgy TiAl-Based Alloy Based on the Activation Energy Map and Processing Map, Mater. Des., 2015, 86, p 922–932. CrossRef
9.
go back to reference J.Y. Shen, L.X. Hu, L.Y. Zhang, and W.C. Liu, Synthesis of TiAl/Nb Composites with Concurrently Enhanced Strength and Plasticity by Powder Metallurgy, Mater. Sci. Eng. A, 2020, 795, p 139997. CrossRef J.Y. Shen, L.X. Hu, L.Y. Zhang, and W.C. Liu, Synthesis of TiAl/Nb Composites with Concurrently Enhanced Strength and Plasticity by Powder Metallurgy, Mater. Sci. Eng. A, 2020, 795, p 139997. CrossRef
10.
go back to reference Q. Wang, G.Q. Chen, H.P. Tang, X.S. Fu, and W.L. Zhou, Enhanced Hot Workability of Ti-46Al-4Nb-0.1B Alloy by Introducing Adjustable β Phase via Elemental Powder Metallurgy, Adv. Eng. Mater., 2020, 23, p 1–7. Q. Wang, G.Q. Chen, H.P. Tang, X.S. Fu, and W.L. Zhou, Enhanced Hot Workability of Ti-46Al-4Nb-0.1B Alloy by Introducing Adjustable β Phase via Elemental Powder Metallurgy, Adv. Eng. Mater., 2020, 23, p 1–7.
11.
go back to reference D.T. Mcdonald, E.W. Lui, S. Palanisamy, M.S. Dargusch, and K. Xia, Achieving Superior Strength and Suctility in Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing, Metall. Mater. Trans. A, 2014, 45(9), p 4089–4102. CrossRef D.T. Mcdonald, E.W. Lui, S. Palanisamy, M.S. Dargusch, and K. Xia, Achieving Superior Strength and Suctility in Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing, Metall. Mater. Trans. A, 2014, 45(9), p 4089–4102. CrossRef
12.
go back to reference A.R. Annamalai, M. Srikanth, R. Varshney, M.Y. Ashokkumar, S.K. Patro, and C.P. Jen, Microstructure Evolution and Mechanical Properties of Spark Plasma Sintered Manganese Addition on Ti-48Al-2Cr-2Nb Alloys, Metals, 2020, 10(12), p 1577–1578. CrossRef A.R. Annamalai, M. Srikanth, R. Varshney, M.Y. Ashokkumar, S.K. Patro, and C.P. Jen, Microstructure Evolution and Mechanical Properties of Spark Plasma Sintered Manganese Addition on Ti-48Al-2Cr-2Nb Alloys, Metals, 2020, 10(12), p 1577–1578. CrossRef
13.
go back to reference E. Ma, Four Approaches to Improve the Tensile Ductility of High-Strength Nanocrystalline Metals, J. Mater. Eng. Perform., 2005, 14(4), p 430–434. CrossRef E. Ma, Four Approaches to Improve the Tensile Ductility of High-Strength Nanocrystalline Metals, J. Mater. Eng. Perform., 2005, 14(4), p 430–434. CrossRef
14.
go back to reference D. Orlov, H. Fujiwara, and K. Ameyama, Obtaining Copper with Harmonic Structure for the Optimal Balance of Structure-Performance Relationship, Mater. Trans., 2013, 54(9), p 1549–1553. CrossRef D. Orlov, H. Fujiwara, and K. Ameyama, Obtaining Copper with Harmonic Structure for the Optimal Balance of Structure-Performance Relationship, Mater. Trans., 2013, 54(9), p 1549–1553. CrossRef
15.
go back to reference Y.G. Liu, X.D. Mi, and S.F. Tian, Effect of Grain Size on the Fracture Toughness of Bimodal Nanocrystalline Materials, Adv. Mater. Res., 2014, 936, p 400–408. CrossRef Y.G. Liu, X.D. Mi, and S.F. Tian, Effect of Grain Size on the Fracture Toughness of Bimodal Nanocrystalline Materials, Adv. Mater. Res., 2014, 936, p 400–408. CrossRef
16.
go back to reference C.L. Li, S.W. Choi, J.M. Oh, J.K. Hong, J.T. Yeom, J.H. Kang, Q.S. Mei, and C.H. Park, Bimodal Grain Structures and Tensile Properties of a Biomedical Co-20Cr-15W-10Ni Alloy with Different Pre-Strains, Rare Met., 2021, 40(1), p 20–30. CrossRef C.L. Li, S.W. Choi, J.M. Oh, J.K. Hong, J.T. Yeom, J.H. Kang, Q.S. Mei, and C.H. Park, Bimodal Grain Structures and Tensile Properties of a Biomedical Co-20Cr-15W-10Ni Alloy with Different Pre-Strains, Rare Met., 2021, 40(1), p 20–30. CrossRef
17.
go back to reference K. Edalati, S. Toh, H. Iwaoka, M. Watanable, Z. Horita, D. Kashioka, and H. Inui, Ultrahigh Strength and High Plasticity in TiAl Intermetallics with Bimodal Grain Structure and Nanotwins, Scr. Mater., 2012, 67(10), p 814–817. CrossRef K. Edalati, S. Toh, H. Iwaoka, M. Watanable, Z. Horita, D. Kashioka, and H. Inui, Ultrahigh Strength and High Plasticity in TiAl Intermetallics with Bimodal Grain Structure and Nanotwins, Scr. Mater., 2012, 67(10), p 814–817. CrossRef
18.
go back to reference L. Cheng, Y. Chen, J.S. Li, and E. Bouzy, Superplastic Deformation Mechanism of a γ-TiAl Alloy with Coarse and Bimodal Grain Structure, Mater. Lett., 2017, 194, p 58–61. CrossRef L. Cheng, Y. Chen, J.S. Li, and E. Bouzy, Superplastic Deformation Mechanism of a γ-TiAl Alloy with Coarse and Bimodal Grain Structure, Mater. Lett., 2017, 194, p 58–61. CrossRef
19.
go back to reference Y.B. Ren, Y. Han, S. Yan, J.P. Sun, Z.X. Duan, H. Chen, and X. Ran, microstructure and Mechanical Properties of Powder Metallurgical TiAl-Based Alloy Made by Micron Bimodal-Sized Powders, J. Mater. Eng. Perform., 2021, 30(1), p 269–280. CrossRef Y.B. Ren, Y. Han, S. Yan, J.P. Sun, Z.X. Duan, H. Chen, and X. Ran, microstructure and Mechanical Properties of Powder Metallurgical TiAl-Based Alloy Made by Micron Bimodal-Sized Powders, J. Mater. Eng. Perform., 2021, 30(1), p 269–280. CrossRef
20.
go back to reference G. Wang, Z. Zheng, L.T. Chang, L. Xu, Y.Y. Cui, and R. Yang, Characterization of TiAl Pre-Alloyed Powder and its Densification Microstructur, Acta Metall. Sin., 2011, 47(10), p 1263–1269. G. Wang, Z. Zheng, L.T. Chang, L. Xu, Y.Y. Cui, and R. Yang, Characterization of TiAl Pre-Alloyed Powder and its Densification Microstructur, Acta Metall. Sin., 2011, 47(10), p 1263–1269.
21.
go back to reference B. Roebuck, J.D. Lord, M. Brook, M.S. Loveday, C.M. Sellars, and R.W. Evans, Measurement of Flow Stress in Hot Axisymmetric Compression Tests, Mater High Temp., 2006, 23, p 59–83. CrossRef B. Roebuck, J.D. Lord, M. Brook, M.S. Loveday, C.M. Sellars, and R.W. Evans, Measurement of Flow Stress in Hot Axisymmetric Compression Tests, Mater High Temp., 2006, 23, p 59–83. CrossRef
22.
go back to reference R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143. CrossRef R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143. CrossRef
23.
go back to reference G. Wang, L. Xu, Y.X. Tian, Z. Zheng, Y.Y. Cui, and R. Yang, Flow Behavior and Microstructure Evolution of a P/M TiAl Alloy during High Temperature Deformation, Mater. Sci. Eng. A, 2011, 528(22–23), p 6754–6763. CrossRef G. Wang, L. Xu, Y.X. Tian, Z. Zheng, Y.Y. Cui, and R. Yang, Flow Behavior and Microstructure Evolution of a P/M TiAl Alloy during High Temperature Deformation, Mater. Sci. Eng. A, 2011, 528(22–23), p 6754–6763. CrossRef
24.
go back to reference M. El Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343(1–2), p 116–125. CrossRef M. El Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343(1–2), p 116–125. CrossRef
25.
go back to reference C.M. Sellar and W.J. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138. CrossRef C.M. Sellar and W.J. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138. CrossRef
26.
go back to reference J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure under Hot-Working Conditions, Mater. Rev., 1969, 14(1), p 1–24. CrossRef J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure under Hot-Working Conditions, Mater. Rev., 1969, 14(1), p 1–24. CrossRef
27.
go back to reference C. Zener and J.H. Hollom, Effect of Strain Rate upon the Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–25. CrossRef C. Zener and J.H. Hollom, Effect of Strain Rate upon the Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–25. CrossRef
28.
go back to reference C. Herzig, T. Przeorski, and Y. Mishin, Self-Diffusion in γ-TiAl: An Experimental Study and Atomistic Calculations, Intermetallics, 1999, 7(3–4), p 389–404. CrossRef C. Herzig, T. Przeorski, and Y. Mishin, Self-Diffusion in γ-TiAl: An Experimental Study and Atomistic Calculations, Intermetallics, 1999, 7(3–4), p 389–404. CrossRef
29.
go back to reference J. Rüsing and C. Herzig, Concentration and Temperature Dependence of Titanium Self-Diffusion and Interdiffusion in the Intermetallic Phase Ti 3Al, Intermetallics, 1996, 4(8), p 647–657. CrossRef J. Rüsing and C. Herzig, Concentration and Temperature Dependence of Titanium Self-Diffusion and Interdiffusion in the Intermetallic Phase Ti 3Al, Intermetallics, 1996, 4(8), p 647–657. CrossRef
30.
go back to reference J.H. Kim, D.H. Shin, and S.L. Semiatin, High Temperature Deformation Behavior of a γ TiAl Alloy Determined Using the Load-Relaxation Test, Mater. Sci. Eng. A, 2003, 344(1–2), p 146–157. J.H. Kim, D.H. Shin, and S.L. Semiatin, High Temperature Deformation Behavior of a γ TiAl Alloy Determined Using the Load-Relaxation Test, Mater. Sci. Eng. A, 2003, 344(1–2), p 146–157.
31.
go back to reference G. Lindwall, K.W. Moon, Z.Q. Chen, M. Mengason, M.E. Williams, J.M. Gorham, J.C. Zhao, and C.E. Campbell, Diffusion in the Ti-Al-V system, J. Phase Equilib. Diffus., 2018, 39(5), p 731–746. CrossRef G. Lindwall, K.W. Moon, Z.Q. Chen, M. Mengason, M.E. Williams, J.M. Gorham, J.C. Zhao, and C.E. Campbell, Diffusion in the Ti-Al-V system, J. Phase Equilib. Diffus., 2018, 39(5), p 731–746. CrossRef
32.
go back to reference X.F. Chen, B. Tang, Y. Liu, X.Y. Xue, L. Li, H.C. Kou, and J.S. Li, Dynamic Recrystallization Behavior of the Ti-48Al-2Cr-2Nb Alloy during Isothermal Hot Deformation, Prog. Nat. Sci. Mater. Int., 2019, 29(5), p 587–594. CrossRef X.F. Chen, B. Tang, Y. Liu, X.Y. Xue, L. Li, H.C. Kou, and J.S. Li, Dynamic Recrystallization Behavior of the Ti-48Al-2Cr-2Nb Alloy during Isothermal Hot Deformation, Prog. Nat. Sci. Mater. Int., 2019, 29(5), p 587–594. CrossRef
33.
go back to reference H.M. Ni, X.J. Dong, Y. Xu, S.Q. Lu, and S.H. Gong, Study on Thermal Deformation Behavior and Constitutive Relationship of Ti-48Al-2Nb-2Cr Alloy, Spec. Cast. Non-ferr. Alloys, 2020, 2, p 228–232. H.M. Ni, X.J. Dong, Y. Xu, S.Q. Lu, and S.H. Gong, Study on Thermal Deformation Behavior and Constitutive Relationship of Ti-48Al-2Nb-2Cr Alloy, Spec. Cast. Non-ferr. Alloys, 2020, 2, p 228–232.
34.
go back to reference F.Y. Dong, Y.D. Liu, Y. Zhang, W.D. Li, P.K. Liaw, M.H. Shi, H.J. Huang, X.J. Zuo, L.S. Luo, Y.Q. Su, and J. Cheng, Thermal Deformation Behavior of γ-TiAl Based Alloy by Plasma Hydrogenation, Int. J. Hydrog. Energy, 2020, 45(58), p 34214–34226. CrossRef F.Y. Dong, Y.D. Liu, Y. Zhang, W.D. Li, P.K. Liaw, M.H. Shi, H.J. Huang, X.J. Zuo, L.S. Luo, Y.Q. Su, and J. Cheng, Thermal Deformation Behavior of γ-TiAl Based Alloy by Plasma Hydrogenation, Int. J. Hydrog. Energy, 2020, 45(58), p 34214–34226. CrossRef
35.
go back to reference Y.V.R.K. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451. Y.V.R.K. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451.
36.
go back to reference Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892. CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892. CrossRef
37.
go back to reference H.T. Jiang, S.W. Tian, W.Q. Guo, G.H. Zhang, and S.W. Zeng, Hot Deformation Behavior and Deformation Mechanism of Two TiAl-Mo Alloys during Hot Compression, Mater. Sci. Eng. A, 2018, 719, p 104–111. CrossRef H.T. Jiang, S.W. Tian, W.Q. Guo, G.H. Zhang, and S.W. Zeng, Hot Deformation Behavior and Deformation Mechanism of Two TiAl-Mo Alloys during Hot Compression, Mater. Sci. Eng. A, 2018, 719, p 104–111. CrossRef
38.
go back to reference Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258. CrossRef Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258. CrossRef
39.
go back to reference D.S. Wen, Y.Y. Zong, Y.Q. Wang, Z.Y. Liu, and D.B. Shan, Positive Influence of Hydrogen on the Hot Workability and Dynamic Recrystallization of a γ-TiAl Based Alloy, Mater. Sci. Eng. A, 2016, 656, p 151–164. CrossRef D.S. Wen, Y.Y. Zong, Y.Q. Wang, Z.Y. Liu, and D.B. Shan, Positive Influence of Hydrogen on the Hot Workability and Dynamic Recrystallization of a γ-TiAl Based Alloy, Mater. Sci. Eng. A, 2016, 656, p 151–164. CrossRef
40.
go back to reference J. Guyon, A. Hazotte, and E. Bouzy, Evolution of Metastable α Phase during Heating of Ti48Al2Cr2Nb Intermetallic Alloy, J. Alloys Compd., 2016, 656, p 667–675. CrossRef J. Guyon, A. Hazotte, and E. Bouzy, Evolution of Metastable α Phase during Heating of Ti48Al2Cr2Nb Intermetallic Alloy, J. Alloys Compd., 2016, 656, p 667–675. CrossRef
41.
go back to reference X.J. Lin, H.J. Huang, X.G. Yuan, Y.X. Wang, B.W. Zheng, X.J. Zuo, and G. Zhou, Study on Hot Deformation Behavior and Processing Map of a Ti-47.5 Al-2.5 V-1.0 Cr-0.2 Zr Alloy with a Fully Lamellar Microstructure, J. Alloys Compd., 2022, 901, p 163648. CrossRef X.J. Lin, H.J. Huang, X.G. Yuan, Y.X. Wang, B.W. Zheng, X.J. Zuo, and G. Zhou, Study on Hot Deformation Behavior and Processing Map of a Ti-47.5 Al-2.5 V-1.0 Cr-0.2 Zr Alloy with a Fully Lamellar Microstructure, J. Alloys Compd., 2022, 901, p 163648. CrossRef
42.
go back to reference Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, and K.C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression, J. Alloys Compd., 2019, 795, p 471–482. CrossRef Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, and K.C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression, J. Alloys Compd., 2019, 795, p 471–482. CrossRef
43.
go back to reference Y.C. Lin, J. Huang, H.B. Li, and D.D. Chen, Phase Transformation and Constitutive Models of a Hot Compressed TC18 Titanium Alloy in the α + β Regime, Vacuum, 2018, 157, p 83–91. CrossRef Y.C. Lin, J. Huang, H.B. Li, and D.D. Chen, Phase Transformation and Constitutive Models of a Hot Compressed TC18 Titanium Alloy in the α + β Regime, Vacuum, 2018, 157, p 83–91. CrossRef
44.
go back to reference S. Gang, Y. Zhong, Y.C. Lin, D.G. He, S. Zhang, and Z.J. Chen, Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates, Materials, 2021, 14(22), p 6750. CrossRef S. Gang, Y. Zhong, Y.C. Lin, D.G. He, S. Zhang, and Z.J. Chen, Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates, Materials, 2021, 14(22), p 6750. CrossRef
Metadata
Title
Investigation on Hot Deformation and Processing Parameter Optimization of Ti48Al2Cr2Nb Alloy with Bimodal Grain Size Distribution Fabricated by Powder Metallurgy
Authors
Jiahe Mei
Ying Han
Yibo Ren
Zhenxin Duan
Hua Chen
Weiwei Zhu
Xu Ran
Publication date
05-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07630-6

Premium Partners