Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2020

31-01-2020

Investigation on the synthesis, characterization, and optimization of ternary BaLa0.4Ce0.1Fe11.5O19/ATP/PANI composites as microwave absorption material

Authors: Huixia Feng, Kui Pan, Qiong Shang, Nali Chen, Liang Zhang, Qing Lian

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, La-Ce-doped hexagonal barium ferrite nanoparticles BaLa0.4Ce0.1Fe11.5O19 were prepared by sol–gel self-propagation method. Based on the influence of material structure and impedance matching on microwave absorption properties, bar-shaped attapulgite (ATP) and highly conductive polyaniline (PANI) were introduced, and BaLa0.4Ce0.1Fe11.5O19/attapulgite/polyaniline (BaLa0.4Ce0.1Fe11.5O19/ATP/PANI) ternary composites were prepared by one-step in situ polymerization. The effects of the mass ratio of BaLa0.4Ce0.1Fe11.5O19 and ATP, the content of BaLa0.4Ce0.1Fe11.5O19 and ATP, polymerization time, and polymerization temperature on the microwave absorption properties have been investigated. The phase composition, micromorphology, absorption properties, and microwave absorption mechanism of the materials were analyzed. The results show that the ternary composite has excellent microwave absorption properties and may become one of the most promising absorption materials. After optimization of the preparation process, when the mass ratio of BaLa0.4Ce0.1Fe11.5O19 and ATP is 93:7, the content of BaLa0.4Ce0.1Fe11.5O19 and ATP is 20 wt%, the polymerization time is 8 h, and the polymerization temperature is 0 °C, BaLa0.4Ce0.1Fe11.5O19/attapulgite/polyaniline(BaLa0.4Ce0.1Fe11.5O19/ATP/PANI) ternary composite has unparalleled microwave absorption performance, the minimum reflection loss can reach − 46.40 dB at 16.2 GHz with a thickness of only 1.6 mm, and the absorption bandwidth with reflection loss below − 10 dB is up to 4.1 GHz (13.9–18 GHz).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Wang, Y. Lin, Y. Liu, H. Yang, J. Mater. Sci. 30(15), 14344–14354 (2019) M. Wang, Y. Lin, Y. Liu, H. Yang, J. Mater. Sci. 30(15), 14344–14354 (2019)
2.
go back to reference Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo, Compos. B 169, 221–228 (2019)CrossRef Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo, Compos. B 169, 221–228 (2019)CrossRef
3.
4.
go back to reference C.H. Peng, H.W. Wang, S.W. Kan, M.Z. Shen, Y.M. Wei, S.Y. Chen, J. Magn. Magn. Mater. 284, 113–119 (2004)CrossRef C.H. Peng, H.W. Wang, S.W. Kan, M.Z. Shen, Y.M. Wei, S.Y. Chen, J. Magn. Magn. Mater. 284, 113–119 (2004)CrossRef
5.
go back to reference K. Shi, J. Li, S. He, H. Bai, Y. Hong, Y. Wu, Z. Zhou, Curr. Appl. Phys. 19(7), 842–848 (2019)CrossRef K. Shi, J. Li, S. He, H. Bai, Y. Hong, Y. Wu, Z. Zhou, Curr. Appl. Phys. 19(7), 842–848 (2019)CrossRef
6.
go back to reference H. Wei, J. Dong, X. Fang, W. Zheng, Y. Sun, Y. Qian, Y. Huang, Compos. Sci. Technol. 169, 52–59 (2019)CrossRef H. Wei, J. Dong, X. Fang, W. Zheng, Y. Sun, Y. Qian, Y. Huang, Compos. Sci. Technol. 169, 52–59 (2019)CrossRef
8.
go back to reference S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, H. Juwhari, Solid State Phenom. 232, 65–92 (2015)CrossRef S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, H. Juwhari, Solid State Phenom. 232, 65–92 (2015)CrossRef
9.
go back to reference M.J. Liu, X.L. Liu, J.X. Wang, Z.X. Wei, L. Jiang, Electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. Nano Res. 3, 670–675 (2010)CrossRef M.J. Liu, X.L. Liu, J.X. Wang, Z.X. Wei, L. Jiang, Electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. Nano Res. 3, 670–675 (2010)CrossRef
10.
go back to reference J. Luo, L. Yue, H. Ji, K. Zhang, N. Yu, J. Mater. Sci. 54(8), 6332–6346 (2019)CrossRef J. Luo, L. Yue, H. Ji, K. Zhang, N. Yu, J. Mater. Sci. 54(8), 6332–6346 (2019)CrossRef
12.
go back to reference K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanoscale. 5, 2411–2420 (2013)CrossRef K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanoscale. 5, 2411–2420 (2013)CrossRef
13.
go back to reference J. Liu, J. Zhang, Y. Li, M. Zhang, Mater. Chem. Phys. 163, 470–477 (2015)CrossRef J. Liu, J. Zhang, Y. Li, M. Zhang, Mater. Chem. Phys. 163, 470–477 (2015)CrossRef
14.
go back to reference T. Qi, Z. Yao, J. Zhou, H. Lin, P. Liu, Y. Lei, Y. Zuo, J. Alloys Compd. 769, 669–677 (2018)CrossRef T. Qi, Z. Yao, J. Zhou, H. Lin, P. Liu, Y. Lei, Y. Zuo, J. Alloys Compd. 769, 669–677 (2018)CrossRef
15.
go back to reference G.A. Bazilevsky, H.C. Affronti, X. Wei, S.L. Campbell, K.E. Wellen, R. Marmorstein, J. Biol. Chem. 294(18), 7259–7268 (2019)CrossRef G.A. Bazilevsky, H.C. Affronti, X. Wei, S.L. Campbell, K.E. Wellen, R. Marmorstein, J. Biol. Chem. 294(18), 7259–7268 (2019)CrossRef
16.
go back to reference H. Gu, S. Yoshinari, R. Ghosh, A.V. Ignatochkina, P.D. Gollnick, K.S. Murakami, C.K. Ho, Nucleic Acids Res. 44(5), 2337–2347 (2016)CrossRef H. Gu, S. Yoshinari, R. Ghosh, A.V. Ignatochkina, P.D. Gollnick, K.S. Murakami, C.K. Ho, Nucleic Acids Res. 44(5), 2337–2347 (2016)CrossRef
17.
go back to reference H. Pan, H. Hou, J. Chen, H. Li, L. Wang, Adsorption 24(5), 459–469 (2018)CrossRef H. Pan, H. Hou, J. Chen, H. Li, L. Wang, Adsorption 24(5), 459–469 (2018)CrossRef
18.
go back to reference W. Nie, F. Wang, R. Hao, L. Zhang, Q. Chen, F. Wei, Y. Liu, Microchem. J. 150, 104076 (2019)CrossRef W. Nie, F. Wang, R. Hao, L. Zhang, Q. Chen, F. Wei, Y. Liu, Microchem. J. 150, 104076 (2019)CrossRef
19.
go back to reference Y. Liu, P. Liu, Z. Su, F. Li, F. Wen, Appl. Surf. Sci. 255(5), 2020–2025 (2008)CrossRef Y. Liu, P. Liu, Z. Su, F. Li, F. Wen, Appl. Surf. Sci. 255(5), 2020–2025 (2008)CrossRef
20.
go back to reference W.E. Scott III, B.P. Weegman, J. Ferrer-Fabrega, S.A. Stein, T. Anazawa, V.A. Kirchner, A.N. Balamurugan, Transplant. Proc. 42(6), 2011–2015 (2010)CrossRef W.E. Scott III, B.P. Weegman, J. Ferrer-Fabrega, S.A. Stein, T. Anazawa, V.A. Kirchner, A.N. Balamurugan, Transplant. Proc. 42(6), 2011–2015 (2010)CrossRef
21.
go back to reference J.P. Pouget, M.E. Jozefowicz, A.E.A. Epstein, X. Tang, A.G. MacDiarmid, Macromolecules 24(3), 779–789 (1991)CrossRef J.P. Pouget, M.E. Jozefowicz, A.E.A. Epstein, X. Tang, A.G. MacDiarmid, Macromolecules 24(3), 779–789 (1991)CrossRef
22.
go back to reference Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, J. Magn. Magn. Mater. 397, 101–107 (2016)CrossRef Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, J. Magn. Magn. Mater. 397, 101–107 (2016)CrossRef
23.
24.
go back to reference B. Lesiak, A. Jablonski, J. Zemek, M. Trchova, J. Stejskal, Langmuir 16(3), 1415–1423 (2000)CrossRef B. Lesiak, A. Jablonski, J. Zemek, M. Trchova, J. Stejskal, Langmuir 16(3), 1415–1423 (2000)CrossRef
25.
go back to reference F. Xu, L. Ma, M. Gan, J. Tang, Z. Li, J. Zheng, J. Hu, J. Alloys Compd. 593, 24–29 (2014)CrossRef F. Xu, L. Ma, M. Gan, J. Tang, Z. Li, J. Zheng, J. Hu, J. Alloys Compd. 593, 24–29 (2014)CrossRef
27.
go back to reference L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, C. Chen, Sci. Rep. 5, 9298 (2015)CrossRef L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, C. Chen, Sci. Rep. 5, 9298 (2015)CrossRef
29.
go back to reference A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K.J. Dhawan, Mater. Chem. A 2(10), 3581–3593 (2014)CrossRef A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K.J. Dhawan, Mater. Chem. A 2(10), 3581–3593 (2014)CrossRef
30.
go back to reference L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Nanoscale 6(6), 3157–3164 (2014)CrossRef L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Nanoscale 6(6), 3157–3164 (2014)CrossRef
31.
go back to reference S. Biswas, I. Arief, S.S. Panja, S. Bose, ACS Appl. Mater. Interfaces. 9(3), 3030–3039 (2017)CrossRef S. Biswas, I. Arief, S.S. Panja, S. Bose, ACS Appl. Mater. Interfaces. 9(3), 3030–3039 (2017)CrossRef
33.
go back to reference W. Li, T. Qiu, L. Wang, S. Ren, J. Zhang, L. He, X. Li, ACS Appl. Mater. Interfaces 5(3), 883–891 (2013)CrossRef W. Li, T. Qiu, L. Wang, S. Ren, J. Zhang, L. He, X. Li, ACS Appl. Mater. Interfaces 5(3), 883–891 (2013)CrossRef
34.
go back to reference E. Drake, F. Medina, M. Horno, IEEE Trans. Microwave Theory Tech. 41(2), 260–267 (1993)CrossRef E. Drake, F. Medina, M. Horno, IEEE Trans. Microwave Theory Tech. 41(2), 260–267 (1993)CrossRef
35.
go back to reference Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang, P. Xiao, Y. Chen, Carbon 105, 438–447 (2016)CrossRef Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang, P. Xiao, Y. Chen, Carbon 105, 438–447 (2016)CrossRef
36.
go back to reference J.E. Yoo, J.L. Cross, T.L. Bucholz, K.S. Lee, M.P. Espe, Y.L. Loo, J. Mater. Chem. 17(13), 1268–1275 (2007)CrossRef J.E. Yoo, J.L. Cross, T.L. Bucholz, K.S. Lee, M.P. Espe, Y.L. Loo, J. Mater. Chem. 17(13), 1268–1275 (2007)CrossRef
37.
go back to reference X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 367–373 (2015)CrossRef X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 367–373 (2015)CrossRef
38.
go back to reference F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Compos. Part B 137, 260–277 (2018)CrossRef F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Compos. Part B 137, 260–277 (2018)CrossRef
39.
go back to reference B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu, J.P. Lei, J.P. Sun, J. Magn. Magn. Mater. 320(6), 1106–1111 (2008)CrossRef B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu, J.P. Lei, J.P. Sun, J. Magn. Magn. Mater. 320(6), 1106–1111 (2008)CrossRef
Metadata
Title
Investigation on the synthesis, characterization, and optimization of ternary BaLa0.4Ce0.1Fe11.5O19/ATP/PANI composites as microwave absorption material
Authors
Huixia Feng
Kui Pan
Qiong Shang
Nali Chen
Liang Zhang
Qing Lian
Publication date
31-01-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-02896-9

Other articles of this Issue 5/2020

Journal of Materials Science: Materials in Electronics 5/2020 Go to the issue