Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 1/2017

13-05-2015 | ORIGINAL ARTICLE

Investigations on enhanced in situ bioxidation of methane from landfill gas (LFG) in a lab-scale model

Authors: D. N. K. Nair, E. J. Zachariah, P. Vinod

Published in: Journal of Material Cycles and Waste Management | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The performance of an exogenous bacterium, Methylobacterium extorquens, in inducing bioxidation of methane from landfill gas (LFG) was assessed in a laboratory scale bioreactor. The study show that enhanced oxidation of methane is attained when the bacteria are introduced into the landfill soil. The maximum percentage reduction of methane fraction from LFG when the bioreactor was inoculated with the methanotrophic bacteria was 94.24 % in aerobic treatment process and 99.97 % in anaerobic process. In the experiments with only the indigenous microorganisms present in the landfill soil, the maximum percentage reduction of methane for the same flow rate of LFG was 59.67 % in aerobic treatment and 45 % in anaerobic treatment. The methane oxidation efficiency of this exogenous methanotrophic bacterium can be considered to be the optimum in anaerobic condition and at a flow rate of 0.6 L/m2/min when the removal percentage is 99.95 %. The results substantiate the use of exogenous microorganisms as potential remediation agents of methane in LFG.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Yousfi AB, Pohland FG (1998) Strategies for simulation, design, and management of solid wastes disposal sites as landfill bioreactors. Pract Period Hazard Toxic Radioact Waste Manag 2(1):13–21CrossRef Al-Yousfi AB, Pohland FG (1998) Strategies for simulation, design, and management of solid wastes disposal sites as landfill bioreactors. Pract Period Hazard Toxic Radioact Waste Manag 2(1):13–21CrossRef
2.
go back to reference Jain P, Powell J, Townsend TG, Reinhart DR (2005) Air permeability of waste in a municipal solid waste landfill. J Environ Eng 131(11):1565–1573CrossRef Jain P, Powell J, Townsend TG, Reinhart DR (2005) Air permeability of waste in a municipal solid waste landfill. J Environ Eng 131(11):1565–1573CrossRef
3.
go back to reference Hac Ko J, Powell J, Jain P, Kim H, Townsend T, Reinhart D (2013) Case study of controlled air addition into landfilled municipal solid waste: design, operation, and control. J Hazard Toxic Radioact Waste 17(4):351–359CrossRef Hac Ko J, Powell J, Jain P, Kim H, Townsend T, Reinhart D (2013) Case study of controlled air addition into landfilled municipal solid waste: design, operation, and control. J Hazard Toxic Radioact Waste 17(4):351–359CrossRef
4.
go back to reference Stein VB, Hettiaratchi JPA, Achari G (2001) Numerical model for biological oxidation and migration of methane in soils. Pract Period Hazard Toxic Radioact Waste Manag 5(4):225–234CrossRef Stein VB, Hettiaratchi JPA, Achari G (2001) Numerical model for biological oxidation and migration of methane in soils. Pract Period Hazard Toxic Radioact Waste Manag 5(4):225–234CrossRef
5.
go back to reference Bogner J, Spokas K (1993) Landfill CH4: rates, fates, and role in global carbon cycle. Chemosphere 26(1–4):369–384CrossRef Bogner J, Spokas K (1993) Landfill CH4: rates, fates, and role in global carbon cycle. Chemosphere 26(1–4):369–384CrossRef
6.
go back to reference Morgan SM, Yang Q (2001) Use of landfill gas for electricity generation. Pract Period Hazard Toxic Radioact Waste Manag 5(1):14–24CrossRef Morgan SM, Yang Q (2001) Use of landfill gas for electricity generation. Pract Period Hazard Toxic Radioact Waste Manag 5(1):14–24CrossRef
7.
go back to reference Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graf C, Moreau-Le Golvan Y, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag 26(5):516–525CrossRef Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graf C, Moreau-Le Golvan Y, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag 26(5):516–525CrossRef
8.
go back to reference Garg A, Achari G, Joshi RC (2007) Application of fuzzy logic to estimate flow of methane for energy generation at a sanitary landfill. J Energy Eng 133(4):212–223CrossRef Garg A, Achari G, Joshi RC (2007) Application of fuzzy logic to estimate flow of methane for energy generation at a sanitary landfill. J Energy Eng 133(4):212–223CrossRef
9.
go back to reference Albanna M, Fernandes L (2009) Effects of temperature, moisture content, and fertilizer addition on biological methane oxidation in landfill cover soils. Pract Period Hazard Toxic Radioact Waste Manag 13(3):187–195CrossRef Albanna M, Fernandes L (2009) Effects of temperature, moisture content, and fertilizer addition on biological methane oxidation in landfill cover soils. Pract Period Hazard Toxic Radioact Waste Manag 13(3):187–195CrossRef
10.
go back to reference Babilotte A, Lagier T, Fiani E, Taramini V (2010) Fugitive methane emissions from landfills: field comparison of five methods on a french landfill. J Environ Eng 136(8):777–784CrossRef Babilotte A, Lagier T, Fiani E, Taramini V (2010) Fugitive methane emissions from landfills: field comparison of five methods on a french landfill. J Environ Eng 136(8):777–784CrossRef
11.
go back to reference Ramani T, Sprague S, Zietsman J, Kumar S, Kumar R, Krishnan A (2012) Landfill gas to energy applications in India: prefeasibility analysis of Mumbai landfills. J Hazard Toxic Radioact Waste 16(3):250–257CrossRef Ramani T, Sprague S, Zietsman J, Kumar S, Kumar R, Krishnan A (2012) Landfill gas to energy applications in India: prefeasibility analysis of Mumbai landfills. J Hazard Toxic Radioact Waste 16(3):250–257CrossRef
12.
go back to reference Ozkaya B, Demir A, Bilgili MS (2007) Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ Modell Softw 22(6):815–822CrossRef Ozkaya B, Demir A, Bilgili MS (2007) Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ Modell Softw 22(6):815–822CrossRef
13.
go back to reference Bogner JE, Meadows M, Czepiel P (1997) Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use Manag 13(4):268–277CrossRef Bogner JE, Meadows M, Czepiel P (1997) Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use Manag 13(4):268–277CrossRef
14.
go back to reference Borjesson G, Svensson BH (1997) Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manag Res 15(1):33–54 Borjesson G, Svensson BH (1997) Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manag Res 15(1):33–54
15.
go back to reference Hilger HA, Liehr SK, Barlaz MA (1999) Exopolysaccharide control of methane oxidation in landfill cover soil. J Environ Eng 125(12):1113–1123CrossRef Hilger HA, Liehr SK, Barlaz MA (1999) Exopolysaccharide control of methane oxidation in landfill cover soil. J Environ Eng 125(12):1113–1123CrossRef
16.
go back to reference Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006) Characterization of methane flux and oxidation at a solid waste landfill. J Environ Eng 132(2):220–228CrossRef Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006) Characterization of methane flux and oxidation at a solid waste landfill. J Environ Eng 132(2):220–228CrossRef
17.
go back to reference Cabral AR, Moreira JFV, Jugnia LB (2010) Biocover performance of landfill methane oxidation: experimental results. J Environ Eng 136(8):785–793CrossRef Cabral AR, Moreira JFV, Jugnia LB (2010) Biocover performance of landfill methane oxidation: experimental results. J Environ Eng 136(8):785–793CrossRef
18.
go back to reference Jung Y, Imhoff PT, Augenstein DC, Yazdani R (2009) Influence of high-permeability layers for enhancing landfill gas capture and reducing fugitive methane emissions from landfills. J Environ Eng 135(3):138–146CrossRef Jung Y, Imhoff PT, Augenstein DC, Yazdani R (2009) Influence of high-permeability layers for enhancing landfill gas capture and reducing fugitive methane emissions from landfills. J Environ Eng 135(3):138–146CrossRef
19.
go back to reference Roncato CDL, Cabral AR (2012) Evaluation of methane oxidation efficiency of two biocovers: field and laboratory results. J Environ Eng 138(2):164–173CrossRef Roncato CDL, Cabral AR (2012) Evaluation of methane oxidation efficiency of two biocovers: field and laboratory results. J Environ Eng 138(2):164–173CrossRef
20.
go back to reference Yuan L, Abichou T, Chanton J, Powelson DK, De Visscher A (2009) Long-term numerical simulation of methane transport and oxidation in compost biofilter. Pract Period Hazard Toxic Radioact Waste Manag 13(3):196–202CrossRef Yuan L, Abichou T, Chanton J, Powelson DK, De Visscher A (2009) Long-term numerical simulation of methane transport and oxidation in compost biofilter. Pract Period Hazard Toxic Radioact Waste Manag 13(3):196–202CrossRef
21.
go back to reference Visvanathan C, Pokhrel D, Hettiaratchi JPA, Wu JS (1999) Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag Res 17(4):313–323CrossRef Visvanathan C, Pokhrel D, Hettiaratchi JPA, Wu JS (1999) Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag Res 17(4):313–323CrossRef
22.
go back to reference Chistoserdova L, Sung-Wei C, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185(10):2980–2987CrossRef Chistoserdova L, Sung-Wei C, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185(10):2980–2987CrossRef
23.
go back to reference Korotkova N, Chistoserdova L, Lidstrom ME (2002) Poly-β-Hydroxybutyrate biosynthesis in the facultative methylotroph Methylobacterium extorquens AM1: identification and mutation of gap11, gap20 and phaR. J Bacteriol 184(22):6174–6181CrossRef Korotkova N, Chistoserdova L, Lidstrom ME (2002) Poly-β-Hydroxybutyrate biosynthesis in the facultative methylotroph Methylobacterium extorquens AM1: identification and mutation of gap11, gap20 and phaR. J Bacteriol 184(22):6174–6181CrossRef
24.
go back to reference Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Lett 62(4):243–249CrossRef Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Lett 62(4):243–249CrossRef
25.
go back to reference Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26(2):226–229CrossRef Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26(2):226–229CrossRef
26.
go back to reference Smejkalová H, Erb TJ, Fuchs G (2010) Methanol assimilation in Methylobacterium extorquens am1: demonstration of all enzymes and their regulation. PLoS ONE 5(10):13001CrossRef Smejkalová H, Erb TJ, Fuchs G (2010) Methanol assimilation in Methylobacterium extorquens am1: demonstration of all enzymes and their regulation. PLoS ONE 5(10):13001CrossRef
27.
go back to reference Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71(11):7245–7252CrossRef Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71(11):7245–7252CrossRef
Metadata
Title
Investigations on enhanced in situ bioxidation of methane from landfill gas (LFG) in a lab-scale model
Authors
D. N. K. Nair
E. J. Zachariah
P. Vinod
Publication date
13-05-2015
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 1/2017
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-015-0397-4

Other articles of this Issue 1/2017

Journal of Material Cycles and Waste Management 1/2017 Go to the issue