Skip to main content
Top

2022 | OriginalPaper | Chapter

10. Ion Beam-Assisted Deposition

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the ion beam-assisted deposition (IBAD) method is presented, which is characterized by the deposition of material in high vacuum and the simultaneous bombardment of the surface with hyperthermal or low-energy ions. The individual sub-processes of the layer deposition, such as the generation of the atoms and ions, the transport of the particles through the vacuum and the processes on the surface during the deposition of the atoms under low-energy ion beam irradiation are discussed. The layer growth under ion irradiation is described. In detail, the significance of the ion energy, the temperature and the ion-to-atom arrival ratio for the layer growth is presented. Individual aspects such as epitaxial growth, evolution of topography, grain size, texture, biaxial orientation, mechanical layer stresses, and densification as a result of ion beam-assisted deposition are considered. The explanations and models for these aspects known in the literature are presented and critically discussed. A decisive advantage of IBAD over conventional deposition methods is the controlled fabrication of thin compound films, in particular nitride and oxide films. Examples of the formation of various nitride and oxide layers are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.K. Hubler, Fundamentals of ion beam-assisted deposition: Technique and film properties, Mater. Sci. Engng. A 115, 181–192 (1989). Particle bombardment effects in thin film deposition, in Plasma-surface interactions and processing of materials, ed. by. O. Auciello, A. Gras-Marti, J.A. Valles-Abarca, D.L. Flamm (Kluwer Academic Publishers, Dordrecht, 1990), pp. 251–280 G.K. Hubler, Fundamentals of ion beam-assisted deposition: Technique and film properties, Mater. Sci. Engng. A 115, 181–192 (1989). Particle bombardment effects in thin film deposition, in Plasma-surface interactions and processing of materials, ed. by. O. Auciello, A. Gras-Marti, J.A. Valles-Abarca, D.L. Flamm (Kluwer Academic Publishers, Dordrecht, 1990), pp. 251–280
2.
go back to reference T. Itoh (ed.), Ion Beam Assisted Film Growth (Elsevier Science Publications, Amsterdam, 1989) T. Itoh (ed.), Ion Beam Assisted Film Growth (Elsevier Science Publications, Amsterdam, 1989)
3.
go back to reference F.A. Smidt, Use of ion beam-assisted deposition to modify the microstructure and properties of thin films. Intern. Mater. Rev. 35, 61–128 (1990)CrossRef F.A. Smidt, Use of ion beam-assisted deposition to modify the microstructure and properties of thin films. Intern. Mater. Rev. 35, 61–128 (1990)CrossRef
4.
go back to reference J.K. Hirvonen, Ion beam assisted thin film deposition. Mater. Sci. Rep. 6, 215–274 (1991)CrossRef J.K. Hirvonen, Ion beam assisted thin film deposition. Mater. Sci. Rep. 6, 215–274 (1991)CrossRef
5.
go back to reference G.K. Wolf, W. Ensinger, Ion bombardment during thin film deposition and its influence on mechanical and chemical surface properties. Nucl. Instr. Meth. Phys. Res. B 59–60, 173–181 (1991) G.K. Wolf, W. Ensinger, Ion bombardment during thin film deposition and its influence on mechanical and chemical surface properties. Nucl. Instr. Meth. Phys. Res. B 5960, 173–181 (1991)
6.
go back to reference B. Rauschenbach, Ion-assisted deposition of thin layers, in Advances in Solid State Physics, ed. by F. Kramer, Vol. 40, (Vieweg & Sohn, Braunschweig 2000), pp. 439–452 B. Rauschenbach, Ion-assisted deposition of thin layers, in Advances in Solid State Physics, ed. by F. Kramer, Vol. 40, (Vieweg & Sohn, Braunschweig 2000), pp. 439–452
7.
go back to reference A.R. Gonzalez-Elipe, F. Yubero, J.M. Sanz, Low Energy Ion-assisted Film Growth (Imperial College Press, London, 2003)CrossRef A.R. Gonzalez-Elipe, F. Yubero, J.M. Sanz, Low Energy Ion-assisted Film Growth (Imperial College Press, London, 2003)CrossRef
8.
go back to reference D.M. Mattox, Fundamentals of ion plaTiNg. J. Vac. Sci. Technol. 10, 47–52 (1973)CrossRef D.M. Mattox, Fundamentals of ion plaTiNg. J. Vac. Sci. Technol. 10, 47–52 (1973)CrossRef
9.
go back to reference L. Pranevicius, Structure and properties of deposits grown by ion beam-activated vacuum deposition techniques. Thin Solid Films 63, 77–85 (1979)CrossRef L. Pranevicius, Structure and properties of deposits grown by ion beam-activated vacuum deposition techniques. Thin Solid Films 63, 77–85 (1979)CrossRef
10.
go back to reference C. Weissmantel, G. Reisse, H.-J. Erler, F. Henny, K. Bewilogua, U. Ebersbach, C. Schürer, Preparation of hard coaTiNgs by ion beam methods. Thin Solid Films 63, 315–325 (1979)CrossRef C. Weissmantel, G. Reisse, H.-J. Erler, F. Henny, K. Bewilogua, U. Ebersbach, C. Schürer, Preparation of hard coaTiNgs by ion beam methods. Thin Solid Films 63, 315–325 (1979)CrossRef
11.
go back to reference R. Gago, I. Jiménez, J.M. Albella, Thin film growth by ion beam-assisted deposition techniques, in Material Surface Processing by Directed Energy Techniques, ed. by Y. Pauleau, (Elsevier, Amsterdam, 2006), p. 345–382 R. Gago, I. Jiménez, J.M. Albella, Thin film growth by ion beam-assisted deposition techniques, in Material Surface Processing by Directed Energy Techniques, ed. by Y. Pauleau, (Elsevier, Amsterdam, 2006), p. 345–382
12.
go back to reference M. Knudson, Das Cosinusgesetz in der kinetischen Gastheorie. Ann. Phys. 48, 1113–1121 (1915) M. Knudson, Das Cosinusgesetz in der kinetischen Gastheorie. Ann. Phys. 48, 1113–1121 (1915)
13.
go back to reference D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (Noyes Publications, Westwood, 1998) D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing (Noyes Publications, Westwood, 1998)
14.
go back to reference H.R. Kaufman, R.S. Robinson, Operation of broad-beam sources (Commenwealth Sientific Corporation, Alexandria, 1987) H.R. Kaufman, R.S. Robinson, Operation of broad-beam sources (Commenwealth Sientific Corporation, Alexandria, 1987)
15.
go back to reference D. Van Vechten, G.K. Hubler, E.P. Donovan, F.D. Correll, Fundamentals of ion-atom-assisted deposition. I. Model of process and reproducibility of film composition, J. Vac. Sci. Technol. A 8, 821–830 (1990) D. Van Vechten, G.K. Hubler, E.P. Donovan, F.D. Correll, Fundamentals of ion-atom-assisted deposition. I. Model of process and reproducibility of film composition, J. Vac. Sci. Technol. A 8, 821–830 (1990)
16.
go back to reference R. Becker, W.B. Herrmannsfeldt, IGUN−A program for the simulation of positive ion extraction including magnetic fields. Rev. Sci. Instrum. 63, 2756–2758 (2008)CrossRef R. Becker, W.B. Herrmannsfeldt, IGUN−A program for the simulation of positive ion extraction including magnetic fields. Rev. Sci. Instrum. 63, 2756–2758 (2008)CrossRef
17.
go back to reference D. Van Vechten, G.K. Hubler, E.P. Donovan, Characterization of a 3 cm Kaufman ion source with nitrogen feed gas. Vacuum 36, 841–845 (1986)CrossRef D. Van Vechten, G.K. Hubler, E.P. Donovan, Characterization of a 3 cm Kaufman ion source with nitrogen feed gas. Vacuum 36, 841–845 (1986)CrossRef
18.
go back to reference J.W. Gerlach, P. Schumacher, M. Mensing, S. Rauschenbach, I. Cermak and B. Rauschenbach, Ion mass and energy selective hyperthermal ion beam-assisted deposition setup. Rev. Sci. Instrum. 88, 063306 (2017) J.W. Gerlach, P. Schumacher, M. Mensing, S. Rauschenbach, I. Cermak and B. Rauschenbach, Ion mass and energy selective hyperthermal ion beam-assisted deposition setup. Rev. Sci. Instrum. 88, 063306 (2017)
19.
go back to reference M.W. Thompson, Physical mechanisms of sputtering. Phys. Rep. 69, 335–371 (1981)CrossRef M.W. Thompson, Physical mechanisms of sputtering. Phys. Rep. 69, 335–371 (1981)CrossRef
20.
go back to reference V.V. Serikov, K. Nanbu, Monte Carlo numerical analysis of target erosion and film growth in three-dimensional sputter chamber. J. Vac. Sci. Technol. A 14, 3108–3123 (1996)CrossRef V.V. Serikov, K. Nanbu, Monte Carlo numerical analysis of target erosion and film growth in three-dimensional sputter chamber. J. Vac. Sci. Technol. A 14, 3108–3123 (1996)CrossRef
21.
go back to reference R.S. Robinson, Energetic binary collisions in rare gas plasmas, J. Vac. Sci. Technol. A 16, 185–188 (1979). J.M.E. Harper, J.J. Cuomo, R.J. Gambino, H.R. Kaufman, R.S. Robinson, Mean free path of negative ions in diode sputtering. J. Vac. Sci. Technol. A 15, 1597–1600 (1978) R.S. Robinson, Energetic binary collisions in rare gas plasmas, J. Vac. Sci. Technol. A 16, 185188 (1979). J.M.E. Harper, J.J. Cuomo, R.J. Gambino, H.R. Kaufman, R.S. Robinson, Mean free path of negative ions in diode sputtering. J. Vac. Sci. Technol. A 15, 1597–1600 (1978)
22.
go back to reference A. Gras-Marti, J.A. Valles-Abarca, Slowing down and thermalization of sputtered particles fluxes: energy distributions. J. Appl. Phys. 54, 1071–1075 (1983)CrossRef A. Gras-Marti, J.A. Valles-Abarca, Slowing down and thermalization of sputtered particles fluxes: energy distributions. J. Appl. Phys. 54, 1071–1075 (1983)CrossRef
23.
go back to reference E. Fermi, Nuclear physics, course notes, ed. by J. Orear, A.H. Rosenfeld, R.A. Schluter (Midway Reprint, 1949 &1950) E. Fermi, Nuclear physics, course notes, ed. by J. Orear, A.H. Rosenfeld, R.A. Schluter (Midway Reprint, 1949 &1950)
24.
go back to reference F. Keywell, A mechanism for sputtering in the high vacuum based upon the theory of neutron cooling. Phys. Rev. 87, 160–161 (1952). Measurements and collision—radiation damage theory of high-vacuum sputtering. Phys. Rev. 97, 1611–1619 (1955) F. Keywell, A mechanism for sputtering in the high vacuum based upon the theory of neutron cooling. Phys. Rev. 87, 160161 (1952). Measurements and collision—radiation damage theory of high-vacuum sputtering. Phys. Rev. 97, 1611–1619 (1955)
25.
go back to reference K. Meyer, I.K. Schuller, C.M. Falco, Thermalization of sputtered atoms. J. Appl. Phys. 52, 5803–5805 (1981)CrossRef K. Meyer, I.K. Schuller, C.M. Falco, Thermalization of sputtered atoms. J. Appl. Phys. 52, 5803–5805 (1981)CrossRef
26.
go back to reference W.D. Westwood, Calculation of the deposition rates in diode sputtering systems. J. Vac. Sci. Technol. 15, 1–9 (1978)CrossRef W.D. Westwood, Calculation of the deposition rates in diode sputtering systems. J. Vac. Sci. Technol. 15, 1–9 (1978)CrossRef
27.
go back to reference A. Kirsch, W. Morokoff, Chr. Werner, Selfconsisted simulation of sputter deposition with Monte Carlo method. J. Appl. Phys. 75, 2278–2285 (1994) A. Kirsch, W. Morokoff, Chr. Werner, Selfconsisted simulation of sputter deposition with Monte Carlo method. J. Appl. Phys. 75, 2278–2285 (1994)
28.
go back to reference N. Bohr, The penetration of atomic particles through matter, Mat Fys. Medd. Dan. Vid. Selsk. XVIII, no. 8 (1948) N. Bohr, The penetration of atomic particles through matter, Mat Fys. Medd. Dan. Vid. Selsk. XVIII, no. 8 (1948)
29.
go back to reference S. Sakabe, Y. Izawa, Cross sections for resonant charge transfer between atoms and their positive ions: collision velocity ≤ 1 .au. Atomic Data and Nucl. Data Table 49, 257–314 (1991) S. Sakabe, Y. Izawa, Cross sections for resonant charge transfer between atoms and their positive ions: collision velocity ≤ 1 .au. Atomic Data and Nucl. Data Table 49, 257–314 (1991)
30.
go back to reference S. Schiller, U. Heisig, S. Panzer, Electron Beam Technology (Wiley, New York, 1982) S. Schiller, U. Heisig, S. Panzer, Electron Beam Technology (Wiley, New York, 1982)
31.
go back to reference B. Lewis, J.C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978) B. Lewis, J.C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978)
32.
go back to reference H. Neddermeyer, STM studies of nucleation and the initial stages of film growth. Crit. Rev. Solid State Mater. Sci. 16, 309–335 (1990)CrossRef H. Neddermeyer, STM studies of nucleation and the initial stages of film growth. Crit. Rev. Solid State Mater. Sci. 16, 309–335 (1990)CrossRef
33.
go back to reference I.V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation and Early Growth Stages and Epitaxy (World Scientific, Singapore, 1995)CrossRef I.V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation and Early Growth Stages and Epitaxy (World Scientific, Singapore, 1995)CrossRef
34.
go back to reference H. Brune, Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf. Sci. Rep. 31, 32–229 (1998)CrossRef H. Brune, Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf. Sci. Rep. 31, 32–229 (1998)CrossRef
35.
go back to reference J.E. Greene, The role of low-energy ion/surface interaction effects during crystal growth from vapor phase: nucleation, and growth, microstructure evolution, and defect annihilation, in Handbook of Crystal growth, ed. by D.T.J. Hurle, Vol. 1 (Elsevier, Amsterdam 1993), pp. 639–681 J.E. Greene, The role of low-energy ion/surface interaction effects during crystal growth from vapor phase: nucleation, and growth, microstructure evolution, and defect annihilation, in Handbook of Crystal growth, ed. by D.T.J. Hurle, Vol. 1 (Elsevier, Amsterdam 1993), pp. 639–681
36.
go back to reference W.D. Wilson, I.G. Haggmark, J.P. Biersack, Calculations of nuclear stopping, ranges, and straggling in the low-energy region. Phys. Rev. B 15, 2458–2468 (1977)CrossRef W.D. Wilson, I.G. Haggmark, J.P. Biersack, Calculations of nuclear stopping, ranges, and straggling in the low-energy region. Phys. Rev. B 15, 2458–2468 (1977)CrossRef
37.
go back to reference E. Bauer, Phänomenologische Theorie der Kristallabscheidung an Oberflächen. Zeitsch. f. Kristallogr. 110, 372–394 (1952)CrossRef E. Bauer, Phänomenologische Theorie der Kristallabscheidung an Oberflächen. Zeitsch. f. Kristallogr. 110, 372–394 (1952)CrossRef
38.
go back to reference J.A. Venables, Introduction to surface and thin film processes (Cambridge University Press, Cambridge 2000) and H. Lüth, Surfaces and Interfaces of Solid Surfaces (Springer, Berlin, 1995) J.A. Venables, Introduction to surface and thin film processes (Cambridge University Press, Cambridge 2000) and H. Lüth, Surfaces and Interfaces of Solid Surfaces (Springer, Berlin, 1995)
39.
go back to reference J.A. Venables, Rate equation approaches to thin film nucleation kinetics. Phil. Mag. 27, 697–738 (1973)CrossRef J.A. Venables, Rate equation approaches to thin film nucleation kinetics. Phil. Mag. 27, 697–738 (1973)CrossRef
40.
go back to reference J.G. Amar, F. Family, P.-M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam, epitaxy. Phys Rev. B 50, 8781–8799 (1994)CrossRef J.G. Amar, F. Family, P.-M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam, epitaxy. Phys Rev. B 50, 8781–8799 (1994)CrossRef
41.
go back to reference J.A. Venables, G.D.T. Spiller, M. Hanbücken, Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399–459 (1984)CrossRef J.A. Venables, G.D.T. Spiller, M. Hanbücken, Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399–459 (1984)CrossRef
42.
go back to reference J. Villain, ConTiNuum models of crystal growth from atomic beams with and without desorption. J. Phys. I France 1, 19–42 (1991)CrossRef J. Villain, ConTiNuum models of crystal growth from atomic beams with and without desorption. J. Phys. I France 1, 19–42 (1991)CrossRef
43.
go back to reference S. Berg, C. Nender, B. Gelin, Ion-assisted selective deposition of thin films. Vacuum 38, 621–625 (1988)CrossRef S. Berg, C. Nender, B. Gelin, Ion-assisted selective deposition of thin films. Vacuum 38, 621–625 (1988)CrossRef
44.
go back to reference W. Möller, D. Bouchier, O. Burat, V. Stambouli, Computer simulation of boron nitride deposition by ion beam-assisted evaporation. Suf. Coat. Technol. 45, 73–81 (1991)CrossRef W. Möller, D. Bouchier, O. Burat, V. Stambouli, Computer simulation of boron nitride deposition by ion beam-assisted evaporation. Suf. Coat. Technol. 45, 73–81 (1991)CrossRef
45.
go back to reference G. Carter, Peening ion ion-assisted thin-film deposition: a generalized model, J. Phys. D: Appl. Phys. 27, 1046–1055 (1994). M.G. McLaren, G. Carter, The species dependence of inert gas ion incorporation in the in-induced deposition of tungsten. J. Appl. Phys. 86, 2889–2895 (1999) G. Carter, Peening ion ion-assisted thin-film deposition: a generalized model, J. Phys. D: Appl. Phys. 27, 10461055 (1994). M.G. McLaren, G. Carter, The species dependence of inert gas ion incorporation in the in-induced deposition of tungsten. J. Appl. Phys. 86, 2889–2895 (1999)
46.
go back to reference J.-K. Kim, J.S. Colligon, S.-H. Jeong, Mathematical modeling for the composition prediction of compound films grown by ion-assisted deposition technique and its application to TiNx film. Nucl. Instr. Meth. In Phys. Res. B 225, 509–515 (2004)CrossRef J.-K. Kim, J.S. Colligon, S.-H. Jeong, Mathematical modeling for the composition prediction of compound films grown by ion-assisted deposition technique and its application to TiNx film. Nucl. Instr. Meth. In Phys. Res. B 225, 509–515 (2004)CrossRef
47.
go back to reference J.E. Greene, S.A. Barnett, J.-E. Sundgren, A. Rockett, Low-energy ion/surface interactions during film growth from the vapor phase: effect on nucleation and growth kinetics, defect structure, and elemental incorporation probabilities, in Plasma-Surface Interactions and Processing of Materials, ed. by O. Auciello, A. Gras-Marti, J.A. Valles-Abarca, L. Flamm (Kluwer Academic Publishers, Dordrecht 1990), pp. 281–311 J.E. Greene, S.A. Barnett, J.-E. Sundgren, A. Rockett, Low-energy ion/surface interactions during film growth from the vapor phase: effect on nucleation and growth kinetics, defect structure, and elemental incorporation probabilities, in Plasma-Surface Interactions and Processing of Materials, ed. by O. Auciello, A. Gras-Marti, J.A. Valles-Abarca, L. Flamm (Kluwer Academic Publishers, Dordrecht 1990), pp. 281–311
48.
go back to reference I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, S118–S128 (2003)CrossRef I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, S118–S128 (2003)CrossRef
49.
go back to reference W. Ensinger, Low energy ion-assisted during deposition – an effective tool for controlling thin film microstructure. Nucl. Instr. Meth. Phys. Res. B 127(128), 796–808 (1997)CrossRef W. Ensinger, Low energy ion-assisted during deposition – an effective tool for controlling thin film microstructure. Nucl. Instr. Meth. Phys. Res. B 127(128), 796–808 (1997)CrossRef
50.
go back to reference L. Hanley, S.B. Sinnott, The growth and modification of materials via ion-surface processing. Surf. Sci. 500, 500–522 (2002)CrossRef L. Hanley, S.B. Sinnott, The growth and modification of materials via ion-surface processing. Surf. Sci. 500, 500–522 (2002)CrossRef
51.
go back to reference V. Grill, J. Shen, C. Evens, R.G. Cooks, Collisions of ions with surfaces at chemically relevant energies: Instrumentation and phenomena. Rev. Sci. Instr. 72, 3149–3179 (2001)CrossRef V. Grill, J. Shen, C. Evens, R.G. Cooks, Collisions of ions with surfaces at chemically relevant energies: Instrumentation and phenomena. Rev. Sci. Instr. 72, 3149–3179 (2001)CrossRef
52.
go back to reference S. Rauschenbach, R. Vogelsang, N. Malinowski, J.W. Gerlach, M. Benyoucef, G. CostanTiNi, Z. Deng, N. Thontasen, K. Kern, Electrospay ion beam deposition: soft landing and fracmentation of functional molecules at solid surfaces. ASC Nano 3, 2901–2910 (2009)CrossRef S. Rauschenbach, R. Vogelsang, N. Malinowski, J.W. Gerlach, M. Benyoucef, G. CostanTiNi, Z. Deng, N. Thontasen, K. Kern, Electrospay ion beam deposition: soft landing and fracmentation of functional molecules at solid surfaces. ASC Nano 3, 2901–2910 (2009)CrossRef
53.
go back to reference W. Ensinger, Ion bombardment effects during deposition of nitride and metal films. Surf. Coat. Technnol. 99, 1–13 (1998)CrossRef W. Ensinger, Ion bombardment effects during deposition of nitride and metal films. Surf. Coat. Technnol. 99, 1–13 (1998)CrossRef
54.
go back to reference J.E. Yehoda, B. Yang, K. Vedam, R. Messier, Investigation of the void structure in amorphous germanium film thin films as function of low-energy ion bombardment. J. Vac. Sci. Technol. A 6, 1631–1635 (1988)CrossRef J.E. Yehoda, B. Yang, K. Vedam, R. Messier, Investigation of the void structure in amorphous germanium film thin films as function of low-energy ion bombardment. J. Vac. Sci. Technol. A 6, 1631–1635 (1988)CrossRef
55.
go back to reference F. Rossi, B. André, A. van Veen, P.E. Mijnarends, H. Schut, F. Labohm, H. Dunlop, M.P. Delplancke, K. Hubbard, Physical properties of a-C: N films produced by ion beam-assisted deposition. J. Mater. Res. 9, 2440–2449 (1994)CrossRef F. Rossi, B. André, A. van Veen, P.E. Mijnarends, H. Schut, F. Labohm, H. Dunlop, M.P. Delplancke, K. Hubbard, Physical properties of a-C: N films produced by ion beam-assisted deposition. J. Mater. Res. 9, 2440–2449 (1994)CrossRef
56.
go back to reference K. Kyuno, D.G. Cahill, R.S. Averbeck, J. Tarus, K. Nordlund, Surface defects and bulk defect migration produced by ion bombardment of Si(001). Phys. Rev. Lett. 83, 4788–4791 (1999)CrossRef K. Kyuno, D.G. Cahill, R.S. Averbeck, J. Tarus, K. Nordlund, Surface defects and bulk defect migration produced by ion bombardment of Si(001). Phys. Rev. Lett. 83, 4788–4791 (1999)CrossRef
57.
go back to reference K. Yoneyama, K. Ogawa, Scanning tunneling microscope studies on recovery processes of sputter-induced surface defects on Si(111)-7x7. Jpn. J. Appl. Phys. 35, 3719–3723 (1996)CrossRef K. Yoneyama, K. Ogawa, Scanning tunneling microscope studies on recovery processes of sputter-induced surface defects on Si(111)-7x7. Jpn. J. Appl. Phys. 35, 3719–3723 (1996)CrossRef
58.
go back to reference O. Rodriguez de la Fuente, M.A. González, J.M. Rojo, Ion bombardment of reconstructed metal surfaces: from tow-dimensional dislocations dipoles to vacancy pits. Phys. Rev. B 63, 085420 (2001) O. Rodriguez de la Fuente, M.A. González, J.M. Rojo, Ion bombardment of reconstructed metal surfaces: from tow-dimensional dislocations dipoles to vacancy pits. Phys. Rev. B 63, 085420 (2001)
59.
go back to reference T. Michely, G. Comsa, Generation and nucleation of adatoms during ion bombardment of Pt(111). Phys. Rev. B 44, 8411–8444 (1991)CrossRef T. Michely, G. Comsa, Generation and nucleation of adatoms during ion bombardment of Pt(111). Phys. Rev. B 44, 8411–8444 (1991)CrossRef
60.
go back to reference D.E. Harrison, Jr., P.W. Kelly, B.J.- Garrison, N. Winograd, Low energy ion impact phenomena on sigle crystal surfaces. Surf. Sci. 76, 311–322 (1978) D.E. Harrison, Jr., P.W. Kelly, B.J.- Garrison, N. Winograd, Low energy ion impact phenomena on sigle crystal surfaces. Surf. Sci. 76, 311–322 (1978)
61.
go back to reference T. Michely, J. Krug, Islands, Mounds, and Atoms, Vol. 42 (Springer Series in Surface Sience. Springer, Berlin 2004) T. Michely, J. Krug, Islands, Mounds, and Atoms, Vol. 42 (Springer Series in Surface Sience. Springer, Berlin 2004)
62.
go back to reference G. Rosenfeld, N.N. Lipkin, W. Wulfhekel, J. Kliewer, K. Morgenstern, B. Poelsema, G. Comsa, New concept for controlled homoepitaxy. Appl. Phys. A 61, 455–466 (1995)CrossRef G. Rosenfeld, N.N. Lipkin, W. Wulfhekel, J. Kliewer, K. Morgenstern, B. Poelsema, G. Comsa, New concept for controlled homoepitaxy. Appl. Phys. A 61, 455–466 (1995)CrossRef
63.
go back to reference A.V. Dvurechenskii, J.V. Smagina, R. Groetschel, V.A. Zinovyev, V.A. Armbrister, P.L. Novikov, S.A. Teys, A.K. Gutakovskii, Ge/Si quantum dot nanostructures grown with low-energy ion beam assisted epitaxy. Surf. Coat. Technol. 196, 25–29 (2005)CrossRef A.V. Dvurechenskii, J.V. Smagina, R. Groetschel, V.A. Zinovyev, V.A. Armbrister, P.L. Novikov, S.A. Teys, A.K. Gutakovskii, Ge/Si quantum dot nanostructures grown with low-energy ion beam assisted epitaxy. Surf. Coat. Technol. 196, 25–29 (2005)CrossRef
64.
go back to reference J.V. Smagina, V.A. Zinovyev, P.L. Novikov, V.A. Armbrister, E.S. Koptev, A.V. Dvurechenskii, Ge/Si nanostructures with quantum dots grown by ion beam assisted heteroepitaxy. J. Phys.: Conf. Series 245, 012071 (2010) J.V. Smagina, V.A. Zinovyev, P.L. Novikov, V.A. Armbrister, E.S. Koptev, A.V. Dvurechenskii, Ge/Si nanostructures with quantum dots grown by ion beam assisted heteroepitaxy. J. Phys.: Conf. Series 245, 012071 (2010)
65.
go back to reference K.A. Riekki, I.T. Koponen, Size selected growth of nanodots: Ion beam-assisted deposition and transition from 2D to 3D growth. Nucl. Instr. Meth. Phys. Res. B 290, 48–53 (2012)CrossRef K.A. Riekki, I.T. Koponen, Size selected growth of nanodots: Ion beam-assisted deposition and transition from 2D to 3D growth. Nucl. Instr. Meth. Phys. Res. B 290, 48–53 (2012)CrossRef
66.
go back to reference J. Frantz, M.O. Jahma, K. Nordlund, I.T. Koponen, Low-energy deposition of Co onto Co islands on Ag(100): effect on submonolayer growth. Phys. Rev. B 71, 075411 (2005) J. Frantz, M.O. Jahma, K. Nordlund, I.T. Koponen, Low-energy deposition of Co onto Co islands on Ag(100): effect on submonolayer growth. Phys. Rev. B 71, 075411 (2005)
67.
go back to reference S. Esch, M. Breeman, M. Morgenstern, T. Michely, G. Comsa, Nucleation and morphology of homoepitaxial Pt(111)-films grown with ion beam-assisted deposition. Surf. Sci. 365, 187–204 (1996)CrossRef S. Esch, M. Breeman, M. Morgenstern, T. Michely, G. Comsa, Nucleation and morphology of homoepitaxial Pt(111)-films grown with ion beam-assisted deposition. Surf. Sci. 365, 187–204 (1996)CrossRef
68.
go back to reference A. Nikzad, H.A. Atwater, Microstructure modifications during early stages of ion-beam-asssited film growth of germanium om SiO2. Suf. Coat. Technol. 51, 243–246 (1992)CrossRef A. Nikzad, H.A. Atwater, Microstructure modifications during early stages of ion-beam-asssited film growth of germanium om SiO2. Suf. Coat. Technol. 51, 243–246 (1992)CrossRef
69.
go back to reference R. Ditchfeld, E.G. Seebauer, Semiconductor surface diffusion: Effects of low-energy ion bombardment, Phys. Rev. B 63, 125317 (2001). Direct measurement of ion-influenced surface diffusion. Phys. Rev. Lett. 82, 1185–1188 (1999) R. Ditchfeld, E.G. Seebauer, Semiconductor surface diffusion: Effects of low-energy ion bombardment, Phys. Rev. B 63, 125317 (2001). Direct measurement of ion-influenced surface diffusion. Phys. Rev. Lett. 82, 1185–1188 (1999)
70.
go back to reference Z. Wang, E.G. Seebauer, Extraordinary temperature amplification in ion-stimulated surface processes at low energies. Phys. Rev. B 66, 205409 (2002). Temperature-dependent energy threshold for ion-stimulated defect formation in solids. Phys. Rev. Lett. 95, 015501 (2005) Z. Wang, E.G. Seebauer, Extraordinary temperature amplification in ion-stimulated surface processes at low energies. Phys. Rev. B 66, 205409 (2002). Temperature-dependent energy threshold for ion-stimulated defect formation in solids. Phys. Rev. Lett. 95, 015501 (2005)
71.
go back to reference H.A. Atwater, Low energy ion-solid interactions during epitaxial growth. Solid State Phenom. 27, 67–106 (1992)CrossRef H.A. Atwater, Low energy ion-solid interactions during epitaxial growth. Solid State Phenom. 27, 67–106 (1992)CrossRef
72.
go back to reference V.O. Babaev, Ju. V. Bykov, M.B. Guseva, Effect of ion irradiation on the formation, structure and properties of thin metal films. Thin Solid Films 38 (1976), 1–8 V.O. Babaev, Ju. V. Bykov, M.B. Guseva, Effect of ion irradiation on the formation, structure and properties of thin metal films. Thin Solid Films 38 (1976), 1–8
73.
go back to reference S. Shimizu, O. Tsukakoshi, S. Komiya, Y. Makita, A molecular and ion beam epitaxy system for the growth of III-V compound semiconductors using a mass-separated low-energy group-V ion beam. Jap. J. Appl. Phys. 24, 1130–1140 (1985)CrossRef S. Shimizu, O. Tsukakoshi, S. Komiya, Y. Makita, A molecular and ion beam epitaxy system for the growth of III-V compound semiconductors using a mass-separated low-energy group-V ion beam. Jap. J. Appl. Phys. 24, 1130–1140 (1985)CrossRef
74.
go back to reference T. Itoh, T. Nakamura, M. Muromachi, T. Sugiyama, Low temperature silicon epitaxy by partially ionized vapor deposition. Jap. J. Appl. Phys. 16, 553–557 (1977)CrossRef T. Itoh, T. Nakamura, M. Muromachi, T. Sugiyama, Low temperature silicon epitaxy by partially ionized vapor deposition. Jap. J. Appl. Phys. 16, 553–557 (1977)CrossRef
75.
go back to reference G.K. Wehner, R.M. Warner Jr., P.D. Wang, Y.H. Kim, SubstituTiNg low-energy (< 30 eV) ion bombardment for elevated temperatures in silicon epitaxy. J. Appl. Phys. 64, 6754–6760 (1988)CrossRef G.K. Wehner, R.M. Warner Jr., P.D. Wang, Y.H. Kim, SubstituTiNg low-energy (< 30 eV) ion bombardment for elevated temperatures in silicon epitaxy. J. Appl. Phys. 64, 6754–6760 (1988)CrossRef
76.
go back to reference S.W. Park, J.Y. Shim, H.K. Baik, Low temperature epitaxial growth of Si05Ge05 alloy layer on Si(001) by ion beam-assisted deposition. J. Electro. Mater. 25, 1399–1406 (1995)CrossRef S.W. Park, J.Y. Shim, H.K. Baik, Low temperature epitaxial growth of Si05Ge05 alloy layer on Si(001) by ion beam-assisted deposition. J. Electro. Mater. 25, 1399–1406 (1995)CrossRef
77.
go back to reference L. Neumann, in Anfangsstadium des ionenstrahlgestützten epitaktischen Wachstums von Galliumnitrid-Schichten auf Siliziumkarbid. Dissertation, University of Leipzig L. Neumann, in Anfangsstadium des ionenstrahlgestützten epitaktischen Wachstums von Galliumnitrid-Schichten auf Siliziumkarbid. Dissertation, University of Leipzig
78.
go back to reference D. Poppitz, A. Lotnyk, J.W. Gerlach, J. Lenzner, M. Grundmann, B. Rauschenbach, An aberration corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE. Micron 73, 1–8 (2015)CrossRef D. Poppitz, A. Lotnyk, J.W. Gerlach, J. Lenzner, M. Grundmann, B. Rauschenbach, An aberration corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE. Micron 73, 1–8 (2015)CrossRef
79.
go back to reference S. Sienz, J.W. Gerlach, T. Höche, A. Sidorenko, B. Rauschenbach, Ion beam-assisted molecular-beam epitaxy: a method to deposit gallium nitride films with high crystalline quality. Thin Solid Films 458, 63–66 (2004)CrossRef S. Sienz, J.W. Gerlach, T. Höche, A. Sidorenko, B. Rauschenbach, Ion beam-assisted molecular-beam epitaxy: a method to deposit gallium nitride films with high crystalline quality. Thin Solid Films 458, 63–66 (2004)CrossRef
80.
go back to reference A. Finzel, Ionenstrahlgestützte Molekularstrahlepitaxie von Galliumnitrid-Schichten auf Silizium. Dissertation, University Leipzig, 2016 A. Finzel, Ionenstrahlgestützte Molekularstrahlepitaxie von Galliumnitrid-Schichten auf Silizium. Dissertation, University Leipzig, 2016
81.
go back to reference L. Neumann, J.W. Gerlach, B. Rauschenbach, Initial stages of the ion beam assisted epitaxial GaN film growth on 6H-SiC(0001). Thin Solid Films 520, 3936–3945 (2012)CrossRef L. Neumann, J.W. Gerlach, B. Rauschenbach, Initial stages of the ion beam assisted epitaxial GaN film growth on 6H-SiC(0001). Thin Solid Films 520, 3936–3945 (2012)CrossRef
82.
go back to reference B. Rauschenbach, A. Lotnyk, L. Neumann, D. Poppitz, J.W. Gerlach, Ion beam-assisted deposition of thin epitaxial GaN films. Materials 10, 690–703 (2017)CrossRef B. Rauschenbach, A. Lotnyk, L. Neumann, D. Poppitz, J.W. Gerlach, Ion beam-assisted deposition of thin epitaxial GaN films. Materials 10, 690–703 (2017)CrossRef
83.
go back to reference B. Strickland, C. Roland, Low-temperature growth and ion-assisted deposition. Phys. Rev. B 51, 5061–5064 (1995)CrossRef B. Strickland, C. Roland, Low-temperature growth and ion-assisted deposition. Phys. Rev. B 51, 5061–5064 (1995)CrossRef
84.
go back to reference S. Blackwell, R. Smith, S.D. Kenny, J.M. Walls, Modeling evaporation, ion beam assist, and magnetron sputtering of thin metal films over realistic time scales. Phys. Rev. B 86, 035416 (2012) S. Blackwell, R. Smith, S.D. Kenny, J.M. Walls, Modeling evaporation, ion beam assist, and magnetron sputtering of thin metal films over realistic time scales. Phys. Rev. B 86, 035416 (2012)
85.
go back to reference E. Chason, B.K. Kellerman, Monte Carlo simulations of ion-enhanced island coarsening. Nucl. Instr. Meth in Phys. Res. B 127(128), 225–229 (1997)CrossRef E. Chason, B.K. Kellerman, Monte Carlo simulations of ion-enhanced island coarsening. Nucl. Instr. Meth in Phys. Res. B 127(128), 225–229 (1997)CrossRef
86.
go back to reference J. Jacobson, B.H. Cooper, J.P. Sethna, Simulations of energetic beam deposition: from picoseconds to seconds. Phys. Rev. B 58, 15847–15865 (1998)CrossRef J. Jacobson, B.H. Cooper, J.P. Sethna, Simulations of energetic beam deposition: from picoseconds to seconds. Phys. Rev. B 58, 15847–15865 (1998)CrossRef
87.
go back to reference B.S. Bunnik, C. de Hoog, E.F.C. Haddeman, B.J. Thijsse, Molecular dynamics study of Cu deposition on Mo and the effects of low-energy ion irradiation. Nucl. Instr. Meth B 187, 57–65 (2002)CrossRef B.S. Bunnik, C. de Hoog, E.F.C. Haddeman, B.J. Thijsse, Molecular dynamics study of Cu deposition on Mo and the effects of low-energy ion irradiation. Nucl. Instr. Meth B 187, 57–65 (2002)CrossRef
88.
go back to reference X.W. Zhou, D.A. Murdick, B. Gillespie, H.N.G. Wadley, Atomic assembly during GaN film growth: molecular dynamics simulation. Phys. Rev. B 73, 045337 (2006) X.W. Zhou, D.A. Murdick, B. Gillespie, H.N.G. Wadley, Atomic assembly during GaN film growth: molecular dynamics simulation. Phys. Rev. B 73, 045337 (2006)
89.
go back to reference H.-C. Petzold, P.J. Heard, Ion-induced deposition for X-ray mask repair: Rate optimization using a time-dependent model. J. Vac. Sc. Technol. B 9, 2664–2669 (1991)CrossRef H.-C. Petzold, P.J. Heard, Ion-induced deposition for X-ray mask repair: Rate optimization using a time-dependent model. J. Vac. Sc. Technol. B 9, 2664–2669 (1991)CrossRef
90.
go back to reference H.O. Funsten, Model for beam-induced deposition of thin metallic films, Nucl. Instr. Meth Phys. Res. B 72, 183–196 (1992), and H.O. Funsten, J.W. Boring, R.E. Johnson, W.L. Brown, Low-temperature beam-induced deposition of thin films. J. Appl. Phys. 71,1475–1484 (1992) H.O. Funsten, Model for beam-induced deposition of thin metallic films, Nucl. Instr. Meth Phys. Res. B 72, 183196 (1992), and H.O. Funsten, J.W. Boring, R.E. Johnson, W.L. Brown, Low-temperature beam-induced deposition of thin films. J. Appl. Phys. 71,1475–1484 (1992)
91.
go back to reference G. Carter, Island-density and size dynamics in ion-assisted atomic deposition. Vacuum 55, 235–247 (1999)CrossRef G. Carter, Island-density and size dynamics in ion-assisted atomic deposition. Vacuum 55, 235–247 (1999)CrossRef
92.
go back to reference I.T. Koponen, M. Rusanen, J. Heinonen, Island size distributions in submonolayer growth with mobile islands and breakup. Phys. Rev. E 58, 4037–4040 (1998). M.O. Jahma, I.T. Koponen, T. Ala.Nissila, Optimal conditions for submonolayer nonoisland growth in ion beam-assisted deposition. Surf. Sci. 601, 5628–5634 (2007) I.T. Koponen, M. Rusanen, J. Heinonen, Island size distributions in submonolayer growth with mobile islands and breakup. Phys. Rev. E 58, 40374040 (1998). M.O. Jahma, I.T. Koponen, T. Ala.Nissila, Optimal conditions for submonolayer nonoisland growth in ion beam-assisted deposition. Surf. Sci. 601, 5628–5634 (2007)
93.
go back to reference I.T. Koponen, Modeling layer.by-layer growth in ion beam-assisted deposition of thin films, Nucl. Instr. Meth in Phys. Res. B 171, 314–324 (2000) I.T. Koponen, Modeling layer.by-layer growth in ion beam-assisted deposition of thin films, Nucl. Instr. Meth in Phys. Res. B 171, 314–324 (2000)
94.
go back to reference R.C. Powell, N.E. Lee, Y.W. Kim, J.E. Greene, Heteroepitaxial wurtzite and zincblende structure GaN grown by reactive ion molecular beam epitaxy: Growth kinetics, microstructure, and properties J. Appl. Phys. 73, 189–204 (1993)CrossRef R.C. Powell, N.E. Lee, Y.W. Kim, J.E. Greene, Heteroepitaxial wurtzite and zincblende structure GaN grown by reactive ion molecular beam epitaxy: Growth kinetics, microstructure, and properties J. Appl. Phys. 73, 189–204 (1993)CrossRef
95.
go back to reference Yu. V. Truskin, D.V. Kulikov, K.L. Safonov, J.W. Gerlach, Th. Höche, B. Rauschenbach, Atomic assembly during ion beam assisted growth: Kinetic modeling. J. Appl. Phys. 103, 114904 (2008) Yu. V. Truskin, D.V. Kulikov, K.L. Safonov, J.W. Gerlach, Th. Höche, B. Rauschenbach, Atomic assembly during ion beam assisted growth: Kinetic modeling. J. Appl. Phys. 103, 114904 (2008)
96.
go back to reference L. Hultmann, W.-D. Münz, J. Musil, K. Kadlec, I. Petrov, J.E. Greene, Low-energy (~100 eV) ion irradiation during growth of TiN deposited by reactive magnetron sputtering: effects of ion flux on film microstructure. J. Vac. Sci. Technol. A 9, 434–438 (1991)CrossRef L. Hultmann, W.-D. Münz, J. Musil, K. Kadlec, I. Petrov, J.E. Greene, Low-energy (~100 eV) ion irradiation during growth of TiN deposited by reactive magnetron sputtering: effects of ion flux on film microstructure. J. Vac. Sci. Technol. A 9, 434–438 (1991)CrossRef
97.
go back to reference J.W. Gerlach, R. Schwertberger, D. Schrupp, S. Sienz, W. Attenberger, B. Rauschenbach, Influence of the ion irradiation during low-energy nitrogen ion-assisted deposition of wurtzitic gallium nitride films on sapphire, Proceed. Intern. Workshop on Nitride semiconductors, IPAP Conference Series 1, 202–205 (2000) J.W. Gerlach, R. Schwertberger, D. Schrupp, S. Sienz, W. Attenberger, B. Rauschenbach, Influence of the ion irradiation during low-energy nitrogen ion-assisted deposition of wurtzitic gallium nitride films on sapphire, Proceed. Intern. Workshop on Nitride semiconductors, IPAP Conference Series 1, 202–205 (2000)
98.
go back to reference J.W. Rabalais, A.H. Al-Bayati, K.J.Boyd, D. Marton, J. Kulik, Z. Zhang, W.K. Chu, Ion-energy effects in silicon ion beam epitaxy. Phys. Rev. B 53, 10781–10792 (1996) J.W. Rabalais, A.H. Al-Bayati, K.J.Boyd, D. Marton, J. Kulik, Z. Zhang, W.K. Chu, Ion-energy effects in silicon ion beam epitaxy. Phys. Rev. B 53, 10781–10792 (1996)
99.
go back to reference S. Mohajerzadeh, C.R. Selvakumar, D.E. Brodie, M.D. Robertson, J.M. Corbett, An ion beam vapor deposition technique for epitaxial growth of Si-Ge films on Si substrate. J. Vac. Sci. Technol. A 14, 1963–1972 (1996)CrossRef S. Mohajerzadeh, C.R. Selvakumar, D.E. Brodie, M.D. Robertson, J.M. Corbett, An ion beam vapor deposition technique for epitaxial growth of Si-Ge films on Si substrate. J. Vac. Sci. Technol. A 14, 1963–1972 (1996)CrossRef
100.
go back to reference D.K. Brice, J.Y. Tsao, S.T. Picraux, Partitioning of ion-induced surface and bulk displacements. Nucl. Instr. Meth. In Phys. Res. B 44, 68–78 (1989)CrossRef D.K. Brice, J.Y. Tsao, S.T. Picraux, Partitioning of ion-induced surface and bulk displacements. Nucl. Instr. Meth. In Phys. Res. B 44, 68–78 (1989)CrossRef
101.
go back to reference Z.Q. Ma, Y.F. Zheng, B.X. Liu, Ion-induced surface and bulk displacement threshold for epitaxial growth. Phys. Stat. Sol. (A) 169, 239–248 (1998). Sketching of preferred energy regime for ion beam assisted epitaxy, App. Surf. Sci. 137, 184–190 (1999) Z.Q. Ma, Y.F. Zheng, B.X. Liu, Ion-induced surface and bulk displacement threshold for epitaxial growth. Phys. Stat. Sol. (A) 169, 239248 (1998). Sketching of preferred energy regime for ion beam assisted epitaxy, App. Surf. Sci. 137, 184–190 (1999)
102.
go back to reference B.A. Movchan, A.V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide. Phys. Met. Metallogr. 28, 83–90 (1969) B.A. Movchan, A.V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide. Phys. Met. Metallogr. 28, 83–90 (1969)
103.
go back to reference J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coaTiNgs. J. Vac. Sci. Technol. 11, 666–670 (1974)CrossRef J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coaTiNgs. J. Vac. Sci. Technol. 11, 666–670 (1974)CrossRef
104.
go back to reference R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 2, 500–503 (1984)CrossRef R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 2, 500–503 (1984)CrossRef
105.
go back to reference F. Adibi, I. Petrov, J.E. Greene, L. Hultman, J.-E. Sundgren, Effects of high-flux low-energy (20–100 eV) ion irradiation during deposition on microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultrahigh-vacuum reactive magnetron sputtering. J. Appl. Phys. 73, 8580–8589 (1993) F. Adibi, I. Petrov, J.E. Greene, L. Hultman, J.-E. Sundgren, Effects of high-flux low-energy (20–100 eV) ion irradiation during deposition on microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultrahigh-vacuum reactive magnetron sputtering. J. Appl. Phys. 73, 8580–8589 (1993)
106.
go back to reference J.W. Gerlach, S. Sienz, W. Attenberger, B. Rauschenbach, Competition of epitaxy and ion beam irradiation-determined texture during ion beam-assisted deposition of gallium nitride films on r-plane sapphire. Phys. Stat. Sol. (c) 1, 161–165 (2002) J.W. Gerlach, S. Sienz, W. Attenberger, B. Rauschenbach, Competition of epitaxy and ion beam irradiation-determined texture during ion beam-assisted deposition of gallium nitride films on r-plane sapphire. Phys. Stat. Sol. (c) 1, 161–165 (2002)
107.
go back to reference J.M. Pomeroy, J. Jacobson, C.C. Hill, B.H. Cooper, J.P. Sethna, Kinetic Monte Carlo-molecular dynamics investigations of hyperthermal copper deposition on Cu(111). Phys. Rev. B 66, 235412 (2002) J.M. Pomeroy, J. Jacobson, C.C. Hill, B.H. Cooper, J.P. Sethna, Kinetic Monte Carlo-molecular dynamics investigations of hyperthermal copper deposition on Cu(111). Phys. Rev. B 66, 235412 (2002)
108.
go back to reference K. Vanormelingen, B. Degroote, H. Pattyn, A. Vantomme, Thin film growth using hyperthermal ions: a surface morphology study. Surf. Sci. 561, 147–153 (2004)CrossRef K. Vanormelingen, B. Degroote, H. Pattyn, A. Vantomme, Thin film growth using hyperthermal ions: a surface morphology study. Surf. Sci. 561, 147–153 (2004)CrossRef
109.
go back to reference T. Sikola, J. Spousta, L. Dittrichova, L. Benes, V. Perina, D. Rafaja, Ion beam-assisted deposition of metallic and ceramic thin films. Nucl. Instr. Meth. Res. Phys. B 127(128), 673–676 (1997)CrossRef T. Sikola, J. Spousta, L. Dittrichova, L. Benes, V. Perina, D. Rafaja, Ion beam-assisted deposition of metallic and ceramic thin films. Nucl. Instr. Meth. Res. Phys. B 127(128), 673–676 (1997)CrossRef
110.
go back to reference X.M. Yang, X.M. Wu, L.J. Zhuge, F. Zhou, Influence of assisted ion energy on surface roughness and mechanical properties of boron carbon nitride films synthesized by DIBSD. Appl. Surf. Sci. 255, 4279–4282 (2009)CrossRef X.M. Yang, X.M. Wu, L.J. Zhuge, F. Zhou, Influence of assisted ion energy on surface roughness and mechanical properties of boron carbon nitride films synthesized by DIBSD. Appl. Surf. Sci. 255, 4279–4282 (2009)CrossRef
111.
go back to reference Z.H. Li, E.S. Cho, S.J. Kwon, Analysis of a MgO protective layer deposited with ion beam-assisted deposition in an AC PDP. J. Korean Phys. Soc. 49, 2332–2337 (2006) Z.H. Li, E.S. Cho, S.J. Kwon, Analysis of a MgO protective layer deposited with ion beam-assisted deposition in an AC PDP. J. Korean Phys. Soc. 49, 2332–2337 (2006)
112.
go back to reference S. Miyata, A. Ibi, T. Izumi, Y. Shioara, Surface roughness of MgO thin film and its critical thickness for optimal biaxial texturing by ion beam-assisted deposition. J. Appl. Phys. 109, 113922 (2011) S. Miyata, A. Ibi, T. Izumi, Y. Shioara, Surface roughness of MgO thin film and its critical thickness for optimal biaxial texturing by ion beam-assisted deposition. J. Appl. Phys. 109, 113922 (2011)
113.
go back to reference M. Marinov, Effect of ion bombardment on the initial stages of thin film growth. Thin Solid Films 46, 267–274 (1977)CrossRef M. Marinov, Effect of ion bombardment on the initial stages of thin film growth. Thin Solid Films 46, 267–274 (1977)CrossRef
114.
go back to reference T.C. Huang, G. Lim, F. Parmigiani, E. Kay, Effect of ion bombardment during deposition on the x-ray microstructure of thin silver films. J. Vac, Sci. Technol. A 3, 2161–2166 (1988) T.C. Huang, G. Lim, F. Parmigiani, E. Kay, Effect of ion bombardment during deposition on the x-ray microstructure of thin silver films. J. Vac, Sci. Technol. A 3, 2161–2166 (1988)
115.
go back to reference R.A. Roy, J.J. Cuomo, D.S. Yee, Control of microstructure and properties of copper films using ion-assisted deposition. J. Vac. Sci. Technol. A 6, 1621–1626 (1988)CrossRef R.A. Roy, J.J. Cuomo, D.S. Yee, Control of microstructure and properties of copper films using ion-assisted deposition. J. Vac. Sci. Technol. A 6, 1621–1626 (1988)CrossRef
116.
go back to reference W. Ensinger, B. Rauschenbach, Microstructural investigations on titanium nitride formed by medium energy ion beam-assisted deposition. Nucl. Instr. Meth. in Phys. Res. B 80(81), 1409–1414 (1993)CrossRef W. Ensinger, B. Rauschenbach, Microstructural investigations on titanium nitride formed by medium energy ion beam-assisted deposition. Nucl. Instr. Meth. in Phys. Res. B 80(81), 1409–1414 (1993)CrossRef
117.
go back to reference W. Ensinger, The influence of the ion flux density on the properties of molybdenum films deposited from the vapour phase under simultaneous argon ion irradiation. Thin Solid Films 272, 54–57 (1996)CrossRef W. Ensinger, The influence of the ion flux density on the properties of molybdenum films deposited from the vapour phase under simultaneous argon ion irradiation. Thin Solid Films 272, 54–57 (1996)CrossRef
118.
go back to reference K. Rajan, R. Roy, J. Trogolo, J.J. Cuomo, Low energy ion beam assisted grain size evolution in thin film deposition. J. Electr. Mater. 26, 1270–1273 (1997)CrossRef K. Rajan, R. Roy, J. Trogolo, J.J. Cuomo, Low energy ion beam assisted grain size evolution in thin film deposition. J. Electr. Mater. 26, 1270–1273 (1997)CrossRef
119.
go back to reference H. Ma, Y. Zou, A.S. Sologubenko, R. Spolenak, Copper thin films by ion beam assisted deposition: strong texture, superior thermal stability and enhanced hardness. Acta Mater. 98, 17–28 (2015)CrossRef H. Ma, Y. Zou, A.S. Sologubenko, R. Spolenak, Copper thin films by ion beam assisted deposition: strong texture, superior thermal stability and enhanced hardness. Acta Mater. 98, 17–28 (2015)CrossRef
120.
go back to reference J.M. López, F.J. Gordillo-Vázquez, O. Böhme, J.M. Albella, Low grain size TiN thin films obtained by low energy ion beam-assisted deposition. Appl. Surf. Sci. 173, 290–295 (2001)CrossRef J.M. López, F.J. Gordillo-Vázquez, O. Böhme, J.M. Albella, Low grain size TiN thin films obtained by low energy ion beam-assisted deposition. Appl. Surf. Sci. 173, 290–295 (2001)CrossRef
121.
go back to reference K. Helming, B. Rauschenbach, R.A. Schwarzer, Analysis of crystallographic texture in small sample areas. Textures Microstructures 26–27, 111–124 (1996)CrossRef K. Helming, B. Rauschenbach, R.A. Schwarzer, Analysis of crystallographic texture in small sample areas. Textures Microstructures 26–27, 111–124 (1996)CrossRef
122.
go back to reference B. Rauschenbach, K. Helming, Implantation-induced texture. Instr. Meth. in Phys. Res. B 42, 216–223 (1989)CrossRef B. Rauschenbach, K. Helming, Implantation-induced texture. Instr. Meth. in Phys. Res. B 42, 216–223 (1989)CrossRef
123.
go back to reference D. Dobrev, Ion beam-induced texture formation in vacuum-condensed thin metal films. Thin Solid Films 92, 41–53 (1982)CrossRef D. Dobrev, Ion beam-induced texture formation in vacuum-condensed thin metal films. Thin Solid Films 92, 41–53 (1982)CrossRef
124.
go back to reference Y. Iijima, N. Tanabe, O. Kohno, Y. Ikeno, In-plane aligned YBa2Cu3O7-x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769–771 (1992)CrossRef Y. Iijima, N. Tanabe, O. Kohno, Y. Ikeno, In-plane aligned YBa2Cu3O7-x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769–771 (1992)CrossRef
125.
go back to reference L.S. Yu, J.M.E. Haper, J.J. Cuomo, D.A. Smith, Alignment of thin films by glancing angle ion bombardment during deposition. Appl. Phys. Lett. 47, 932–933 (1985)CrossRef L.S. Yu, J.M.E. Haper, J.J. Cuomo, D.A. Smith, Alignment of thin films by glancing angle ion bombardment during deposition. Appl. Phys. Lett. 47, 932–933 (1985)CrossRef
126.
go back to reference J.J. Trillat, L. Tertain, Etude des structures superficielles par diffraction électronique et bombardement ionique combinés. Applications. J. Chim. Phys. Phys.-Chim. Biol. 53, 570–578 (1956) J.J. Trillat, L. Tertain, Etude des structures superficielles par diffraction électronique et bombardement ionique combinés. Applications. J. Chim. Phys. Phys.-Chim. Biol. 53, 570–578 (1956)
127.
go back to reference G.J. Ogilvie, The structure of silver crystals after argon-ion bombardment. J. Phys. Chem. Solids 10, 222–228 (1959)CrossRef G.J. Ogilvie, The structure of silver crystals after argon-ion bombardment. J. Phys. Chem. Solids 10, 222–228 (1959)CrossRef
128.
go back to reference G.J. Ogilvie, A.A. Thomson, Influence of temperature and bombardment rate on disorientation of silver single crystals by ion bombardment. J. Phys. Chem. Solids 17, 203–209 (1961)CrossRef G.J. Ogilvie, A.A. Thomson, Influence of temperature and bombardment rate on disorientation of silver single crystals by ion bombardment. J. Phys. Chem. Solids 17, 203–209 (1961)CrossRef
129.
go back to reference G.N. van Wyk, N.J. Smith, Ion bombardment induced preferential orientation in polycrystalline Cu Targets. Rad. Eff. 38, 245–247 (1987) G.N. van Wyk, N.J. Smith, Ion bombardment induced preferential orientation in polycrystalline Cu Targets. Rad. Eff. 38, 245–247 (1987)
130.
go back to reference B. Rauschenbach, J.W. Gerlach, Texture development in titanium nitride thin films grown by low-energy ion deposition. Cryst. Res. Technol. 35, 675–688 (2000)CrossRef B. Rauschenbach, J.W. Gerlach, Texture development in titanium nitride thin films grown by low-energy ion deposition. Cryst. Res. Technol. 35, 675–688 (2000)CrossRef
131.
go back to reference H. Wengenmair, J.W. Gerlach, U. Preckwinkel, B. Stritzker, B. Rauschenbach, Photon and ion beam-assisted deposition of titanium nitride. Appl. Surf. Sci. 99, 313–318 (1996)CrossRef H. Wengenmair, J.W. Gerlach, U. Preckwinkel, B. Stritzker, B. Rauschenbach, Photon and ion beam-assisted deposition of titanium nitride. Appl. Surf. Sci. 99, 313–318 (1996)CrossRef
132.
go back to reference L. Hultman, J.-E. Sundgren, J.E. Greene, D.B. Bergstrom, I. Petrov, High-flux low-energy (20 eV) N+2 ion irradiation during TiN deposition by reactive magnetron sputtering: effects on microstructure and preferred orientation. J. Appl. Phys. 78, 5395–5403 (1995)CrossRef L. Hultman, J.-E. Sundgren, J.E. Greene, D.B. Bergstrom, I. Petrov, High-flux low-energy (20 eV) N+2 ion irradiation during TiN deposition by reactive magnetron sputtering: effects on microstructure and preferred orientation. J. Appl. Phys. 78, 5395–5403 (1995)CrossRef
133.
go back to reference D. Edström, D.G. Sangiovanni, L. Hultman, I. Petrov, J.E. Greene, V. Chirita, TiN film growth on misoriented TiN grains with simultaneous low-energy bombardment: restructuring leading to epitaxy. Thin Solid Films 688, 137380 (2019) D. Edström, D.G. Sangiovanni, L. Hultman, I. Petrov, J.E. Greene, V. Chirita, TiN film growth on misoriented TiN grains with simultaneous low-energy bombardment: restructuring leading to epitaxy. Thin Solid Films 688, 137380 (2019)
134.
go back to reference D. Gall, I. Petrov, L.D. Madson, J.-E. Sundgren, J.E. Greene, Microstructure and electronic properties of the refractory semiconductor ScN grown on MgO(001) by ultra-high-vacuum reactive magnetron sputter deposition. J. Vac. Sci. Technol. A 16, 2411–2417 (1998)CrossRef D. Gall, I. Petrov, L.D. Madson, J.-E. Sundgren, J.E. Greene, Microstructure and electronic properties of the refractory semiconductor ScN grown on MgO(001) by ultra-high-vacuum reactive magnetron sputter deposition. J. Vac. Sci. Technol. A 16, 2411–2417 (1998)CrossRef
135.
go back to reference J.W. Gerlach, U. Preckwinkel, H. Wengenmair, T. Kraus, B. Rauschenbach, Biaxial alignment of TiN films prepared by ion beam-assisted deposition. Appl. Phys. Lett. 68, 2360–2362 (1996)CrossRef J.W. Gerlach, U. Preckwinkel, H. Wengenmair, T. Kraus, B. Rauschenbach, Biaxial alignment of TiN films prepared by ion beam-assisted deposition. Appl. Phys. Lett. 68, 2360–2362 (1996)CrossRef
136.
go back to reference J. Dzick, S. Sievers, J. Hoffmann, K. Thiele, F. Garcia-Moreno, A. Usoskin, C. Jooss, H.C. Freyhardt, Biaxially textured buffer layers on large-area polycrystalline substrates. Mat. Soc. Symp. Proc. 595, 55–66 (2000) J. Dzick, S. Sievers, J. Hoffmann, K. Thiele, F. Garcia-Moreno, A. Usoskin, C. Jooss, H.C. Freyhardt, Biaxially textured buffer layers on large-area polycrystalline substrates. Mat. Soc. Symp. Proc. 595, 55–66 (2000)
137.
go back to reference K.G. Ressler, N. Sonneenberg, M.J. Cima, The development of biaxial alignment in yttria-stabilized zirconia films fabricated by ion beam-assisted deposition. J. Electr. Mater. 25, 35–43 (1996). Mechanism of biaxial alignment of oxide thin films during ion beam-assisted deposition J. Am. Ceram. Soc. 80, 2637–264 (1997) K.G. Ressler, N. Sonneenberg, M.J. Cima, The development of biaxial alignment in yttria-stabilized zirconia films fabricated by ion beam-assisted deposition. J. Electr. Mater. 25, 3543 (1996). Mechanism of biaxial alignment of oxide thin films during ion beam-assisted deposition J. Am. Ceram. Soc. 80, 2637–264 (1997)
138.
go back to reference A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267–288 (1967) A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267–288 (1967)
139.
go back to reference C.W. Thompson, Structure evolution during Processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000)CrossRef C.W. Thompson, Structure evolution during Processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000)CrossRef
140.
go back to reference M. Kiuchi, A. Chayahara, Y. Horino, K. Fujii, M. Satou, H.J. Kang, Y.W. Beag, Y. Kimura, R. Shimizu, Preferentially orientated crystal growth in dynamic mixing process—an approach by Monte Carlo simulation. Jap. J. Appl. Phys. 29, 2059–2065 (1990)CrossRef M. Kiuchi, A. Chayahara, Y. Horino, K. Fujii, M. Satou, H.J. Kang, Y.W. Beag, Y. Kimura, R. Shimizu, Preferentially orientated crystal growth in dynamic mixing process—an approach by Monte Carlo simulation. Jap. J. Appl. Phys. 29, 2059–2065 (1990)CrossRef
141.
go back to reference R.T. Brewer, H.A. Atwater, Rapid biaxial texture development during nucleation of MgO thin films during ion beam-assisted deposition. Appl. Phys. Lett. 80, 3388–3390 (2002)CrossRef R.T. Brewer, H.A. Atwater, Rapid biaxial texture development during nucleation of MgO thin films during ion beam-assisted deposition. Appl. Phys. Lett. 80, 3388–3390 (2002)CrossRef
142.
go back to reference R.M. Bradley, J.M.E. Harper, D.A. Smith, Theory of Thin Film orientation by ion bombardment during deposition. J. Appl. Phys. 60, 4160–4164 (1986)CrossRef R.M. Bradley, J.M.E. Harper, D.A. Smith, Theory of Thin Film orientation by ion bombardment during deposition. J. Appl. Phys. 60, 4160–4164 (1986)CrossRef
143.
go back to reference B.R. Appelton, G. Foti, Channeling, in Ion Beam Handbook for Material Analysis. ed. by J.W. Mayer, E. Rimini, (Academic Press, New York, 1977) B.R. Appelton, G. Foti, Channeling, in Ion Beam Handbook for Material Analysis. ed. by J.W. Mayer, E. Rimini, (Academic Press, New York, 1977)
144.
go back to reference L. Dong, D.J. Srolovitz, Texture development mechanism in ion beam-assisted deposition. J. Appl. Phys. 84, 5261–5269 (1998)CrossRef L. Dong, D.J. Srolovitz, Texture development mechanism in ion beam-assisted deposition. J. Appl. Phys. 84, 5261–5269 (1998)CrossRef
145.
go back to reference G. Knuyt, C. Quaeyhaegens, J. D’Heans, L.M. Stals, A quantitative model for the evolution from random orientation to unique texture in PVD thin film formation. Thin Solid Films 258, 159–169 (1995) G. Knuyt, C. Quaeyhaegens, J. D’Heans, L.M. Stals, A quantitative model for the evolution from random orientation to unique texture in PVD thin film formation. Thin Solid Films 258, 159–169 (1995)
146.
go back to reference D.S. Rickerby, A.M. Jones, B.A. Bellamy, Internal stress in titanium nitride coatings: modelling of complex stress systems. Surf. Coat Technol. 36, 661–674 (1988)CrossRef D.S. Rickerby, A.M. Jones, B.A. Bellamy, Internal stress in titanium nitride coatings: modelling of complex stress systems. Surf. Coat Technol. 36, 661–674 (1988)CrossRef
147.
go back to reference J. Pelleg, L.Z. Zervin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films 197, 117–128 (1991)CrossRef J. Pelleg, L.Z. Zervin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films 197, 117–128 (1991)CrossRef
148.
go back to reference U.C. Oh, J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films. J. Appl. Phys. 74, 1692–1696 (1993)CrossRef U.C. Oh, J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films. J. Appl. Phys. 74, 1692–1696 (1993)CrossRef
149.
go back to reference H. Windischmann, An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering, J. Appl. Phys. 62, 1800–1807 (1987). Intrinsic stress in sputter-deposited thin films. Crit. Rev. Solid State Mat. Sci. 17, 547–596 (1992) H. Windischmann, An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering, J. Appl. Phys. 62, 18001807 (1987). Intrinsic stress in sputter-deposited thin films. Crit. Rev. Solid State Mat. Sci. 17, 547–596 (1992)
150.
go back to reference C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30–34 (1993)CrossRef C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30–34 (1993)CrossRef
151.
go back to reference M.F. Doerner, W.D. Nix, Stress and deformation processes in thin films on substrates, CRC Crit. Rev. Solid St. Mater. Sci. 14, 225–268 (1988) M.F. Doerner, W.D. Nix, Stress and deformation processes in thin films on substrates, CRC Crit. Rev. Solid St. Mater. Sci. 14, 225–268 (1988)
152.
go back to reference J.F. Nye, Physical Properties of Crystals (University Oxford Press, Oxford, 1957) J.F. Nye, Physical Properties of Crystals (University Oxford Press, Oxford, 1957)
153.
go back to reference G. Abadias, Y.Y. Tse, Diffraction stress analysis in fiber-textured TiN thin films grown by ion beam sputtering: application to (001) and mixed (001)+(111) texture. J. Appl. Phys. 95, 2414–2428 (2004)CrossRef G. Abadias, Y.Y. Tse, Diffraction stress analysis in fiber-textured TiN thin films grown by ion beam sputtering: application to (001) and mixed (001)+(111) texture. J. Appl. Phys. 95, 2414–2428 (2004)CrossRef
154.
go back to reference V. Valvoda, J. Musil, X-ray analysis of strain in titanium nitride layers. Thin Solid Films 149, 49–60 (1989)CrossRef V. Valvoda, J. Musil, X-ray analysis of strain in titanium nitride layers. Thin Solid Films 149, 49–60 (1989)CrossRef
155.
go back to reference J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition. J. Phys. D: Appl. Phys. 30, 5–12 (1997)CrossRef J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition. J. Phys. D: Appl. Phys. 30, 5–12 (1997)CrossRef
156.
go back to reference D.R. McKenzie, Y. Yin, W.D. McFall, N.H. Hoang, The orientation dependence of the elastic strain energy in cubic crystals and its application to the preferred orientation in titanium nitride thin films. J. Phys.: Condens. Matter 8, 5883–5890 (1996) D.R. McKenzie, Y. Yin, W.D. McFall, N.H. Hoang, The orientation dependence of the elastic strain energy in cubic crystals and its application to the preferred orientation in titanium nitride thin films. J. Phys.: Condens. Matter 8, 5883–5890 (1996)
157.
go back to reference S. Mahieu, P. Ghekiere, D. Depla, R.D. Gryse, Biaxial alignment in sputter deposited thin films, Thin Solid Films 515, 1229–1249 (2006). S. Mahieu, D. Depla, Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate. J. Phys. D: Appl. Phys. 42, 053002 (2009) S. Mahieu, P. Ghekiere, D. Depla, R.D. Gryse, Biaxial alignment in sputter deposited thin films, Thin Solid Films 515, 1229–1249 (2006). S. Mahieu, D. Depla, Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate. J. Phys. D: Appl. Phys. 42, 053002 (2009)
158.
go back to reference J.D. Targove, H.A. Macleod, Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition. Appl. Optics 27, 3779–3781 (1988)CrossRef J.D. Targove, H.A. Macleod, Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition. Appl. Optics 27, 3779–3781 (1988)CrossRef
159.
go back to reference D.M. Mattox, G.J. Kominiak, Structure modification by ion bombardment during deposition. J. Vac. Sci. Technol. 9, 528–532 (1972)CrossRef D.M. Mattox, G.J. Kominiak, Structure modification by ion bombardment during deposition. J. Vac. Sci. Technol. 9, 528–532 (1972)CrossRef
160.
go back to reference P.J. Martin, R.P. Netterfield, W.G. Sainty, Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition. J. Appl. Phys. 55, 235–241 (1984)CrossRef P.J. Martin, R.P. Netterfield, W.G. Sainty, Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition. J. Appl. Phys. 55, 235–241 (1984)CrossRef
161.
go back to reference K.H. Guenther, B. Loo, D. Bruns, J. Edgell, D. Widham, K.-H. Müller, Microstructure analysis of thin films deposited by reactive evaporation and reactive ion-plating, Proc. SPIE 1019, 73–83 (1988), see also J. Vac. Sci. Technol. A 7, 1436–1445 (1989) K.H. Guenther, B. Loo, D. Bruns, J. Edgell, D. Widham, K.-H. Müller, Microstructure analysis of thin films deposited by reactive evaporation and reactive ion-plating, Proc. SPIE 1019, 73–83 (1988), see also J. Vac. Sci. Technol. A 7, 1436–1445 (1989)
162.
go back to reference H.-P. Kaukonen, R.M. Nieminen, Moleclar-dynamics simulation of the growth of diamond.like films by energetic carbon-atom beams. Phys. Rev. Lett. 68, 620–622 (1992) H.-P. Kaukonen, R.M. Nieminen, Moleclar-dynamics simulation of the growth of diamond.like films by energetic carbon-atom beams. Phys. Rev. Lett. 68, 620–622 (1992)
163.
go back to reference K.-H. Müller, Modelling ion-assisted deposition of CeO2 films. Appl. Phys. A 40, 209–213 (1986)CrossRef K.-H. Müller, Modelling ion-assisted deposition of CeO2 films. Appl. Phys. A 40, 209–213 (1986)CrossRef
164.
go back to reference K.-H. Müller, Ion beam-induced epitaxial vapour-phase growth: A molecular-dynamics study. Phys. Rev. B 35, 7906–7913 (1987)CrossRef K.-H. Müller, Ion beam-induced epitaxial vapour-phase growth: A molecular-dynamics study. Phys. Rev. B 35, 7906–7913 (1987)CrossRef
165.
go back to reference G.I. Grigorov, I.N. Martev, J.-P. Langeron, J.-L. Vignes, A choice of the optimum density of ion bombardment by ion-assisted physical vapor deposition of films. Thin Solid Films 161, 249–256 (1988)CrossRef G.I. Grigorov, I.N. Martev, J.-P. Langeron, J.-L. Vignes, A choice of the optimum density of ion bombardment by ion-assisted physical vapor deposition of films. Thin Solid Films 161, 249–256 (1988)CrossRef
166.
go back to reference G.I. Grigorov, K.G. Grigorov, R. Sporken, R. Caudano, Ion-induced densification of pvd films–a choice of the optimum density of ion bombardment. Appl. Phys. A 63, 399–401 (1996)CrossRef G.I. Grigorov, K.G. Grigorov, R. Sporken, R. Caudano, Ion-induced densification of pvd films–a choice of the optimum density of ion bombardment. Appl. Phys. A 63, 399–401 (1996)CrossRef
167.
go back to reference G. Carter, Peening ion-assisted thin-film deposition: a generalized model. J. Phys. D: Appl. Phys. 27, 1046–1055 (1994)CrossRef G. Carter, Peening ion-assisted thin-film deposition: a generalized model. J. Phys. D: Appl. Phys. 27, 1046–1055 (1994)CrossRef
168.
go back to reference I.C. Noyan, J.B. Cohen, Residual stress: Measurement by Diffraction and Interpretation (Springer, Berlin, 1987)CrossRef I.C. Noyan, J.B. Cohen, Residual stress: Measurement by Diffraction and Interpretation (Springer, Berlin, 1987)CrossRef
169.
go back to reference C.A. Volkert, Stress and plastic flow in silicon during amorphization by ion bombardment. J. Appl. Phys. 70, 3521–3527 (1991)CrossRef C.A. Volkert, Stress and plastic flow in silicon during amorphization by ion bombardment. J. Appl. Phys. 70, 3521–3527 (1991)CrossRef
170.
go back to reference M. Zeitler, S. Sienz, B. Rauschenbach, Study of stress evolution of boron nitride films prepared by ion-assisted deposition. J. Vac. Sci. Technol. A 17, 597–602 (1999)CrossRef M. Zeitler, S. Sienz, B. Rauschenbach, Study of stress evolution of boron nitride films prepared by ion-assisted deposition. J. Vac. Sci. Technol. A 17, 597–602 (1999)CrossRef
171.
go back to reference G.G. Stoney, The tension of metallic films deposited by electrolysis. Proc. Royal Soc. London, Ser. A 82, 172–175 (1909) G.G. Stoney, The tension of metallic films deposited by electrolysis. Proc. Royal Soc. London, Ser. A 82, 172–175 (1909)
172.
go back to reference L.B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003) L.B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003)
173.
go back to reference J. Keckes, J.W. Gerlach, R. Averbeck, H. Riechert, S. Bader, B. Hahn, H.-J. Lugauer, A. Lell, V. Härle, A. Wenzel, B. Rauschenbach, Temperature dependence of stresses in GaN thin films grown on (0001) sapphire: Modeling of thermal stresses. App. Phys. Lett. 79, 4307–4309 (2001)CrossRef J. Keckes, J.W. Gerlach, R. Averbeck, H. Riechert, S. Bader, B. Hahn, H.-J. Lugauer, A. Lell, V. Härle, A. Wenzel, B. Rauschenbach, Temperature dependence of stresses in GaN thin films grown on (0001) sapphire: Modeling of thermal stresses. App. Phys. Lett. 79, 4307–4309 (2001)CrossRef
174.
go back to reference H. Trinkaus, A.I. Ryazanov, Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys. Rev. Lett. 74, 5072–5074 (1995)CrossRef H. Trinkaus, A.I. Ryazanov, Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys. Rev. Lett. 74, 5072–5074 (1995)CrossRef
175.
go back to reference K. Dahmen, M. Giesen, J. Ikonomov, K. Starbova, H. Ibach, Steady-state surface stress induced in noble gas sputtering. Thin Solid Films 428, 6–10 (2003)CrossRef K. Dahmen, M. Giesen, J. Ikonomov, K. Starbova, H. Ibach, Steady-state surface stress induced in noble gas sputtering. Thin Solid Films 428, 6–10 (2003)CrossRef
176.
go back to reference N. Kalyanasundaram, M.C. Moore, J.B. Freund, H.T. Johnson, Stress evolution due to medium-energy ion bombardment of silicon, Acta Mater. 54, 483–491 (2006). N. Kalyanasundaram, M. Wood, J.B. Freund, H.T. Johnson, Stress evolution to steady state in ion bombardment of silicon. Mechan. Res. Comm. 15, 50–56 (2008) N. Kalyanasundaram, M.C. Moore, J.B. Freund, H.T. Johnson, Stress evolution due to medium-energy ion bombardment of silicon, Acta Mater. 54, 483491 (2006). N. Kalyanasundaram, M. Wood, J.B. Freund, H.T. Johnson, Stress evolution to steady state in ion bombardment of silicon. Mechan. Res. Comm. 15, 50–56 (2008)
177.
go back to reference W.L. Chan, E. Chason, C. Iamsumang, Surface stress induced in Cu foils during and after low energy ion bombardment, Nucl.Instr. Meth.in Phys. Res. B 257, 428–432 (2007). W.L. Chan, E. Chason, Stress evolution and defect diffusion in Cu during low energy ion irradiation: experiments and modeling. J. Vac. Sci. Technol. A 26, 44–51 (2008) W.L. Chan, E. Chason, C. Iamsumang, Surface stress induced in Cu foils during and after low energy ion bombardment, Nucl.Instr. Meth.in Phys. Res. B 257, 428–432 (2007). W.L. Chan, E. Chason, Stress evolution and defect diffusion in Cu during low energy ion irradiation: experiments and modeling. J. Vac. Sci. Technol. A 26, 44–51 (2008)
178.
go back to reference W.L. Chan, K. Zhao, N. Vo, Y. Ashkenazy, D.G. Cahill, R.S. Averback, Stress evolution in platinum thin films during low-energy ion irradiation. Phys. Rev. B 77, 205405 (2008) W.L. Chan, K. Zhao, N. Vo, Y. Ashkenazy, D.G. Cahill, R.S. Averback, Stress evolution in platinum thin films during low-energy ion irradiation. Phys. Rev. B 77, 205405 (2008)
179.
go back to reference T. Edler, S.G. Mayr, Mechanisms of stress generation during bombardment of Ge with keV ions: experiments and molecular dynamics simulations. New J. Phys. 9, 325 (2007)CrossRef T. Edler, S.G. Mayr, Mechanisms of stress generation during bombardment of Ge with keV ions: experiments and molecular dynamics simulations. New J. Phys. 9, 325 (2007)CrossRef
180.
go back to reference Y. Ishii, C.S. Madi, M.J. Aziz, E. Chason, Stress evolution in Si during low energy ion bombardment. J. Mater. Res. 29, 2942–2948 (2014)CrossRef Y. Ishii, C.S. Madi, M.J. Aziz, E. Chason, Stress evolution in Si during low energy ion bombardment. J. Mater. Res. 29, 2942–2948 (2014)CrossRef
181.
go back to reference F.M. d’Heurle, Aluminium films deposited by rf sputtering. Metall. Mater. Trans. 1, 725–732 (1970) F.M. d’Heurle, Aluminium films deposited by rf sputtering. Metall. Mater. Trans. 1, 725–732 (1970)
182.
go back to reference J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989)CrossRef J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989)CrossRef
183.
go back to reference D.W. Hoffman, J.A. Thornton, Compressive stress and inert gas in Mo films sputtered from a cylindrical-post magnetron with Ne, Ar, Kr, and Xe. J. Vac. Sci. Technol. 17, 380–383 (1980)CrossRef D.W. Hoffman, J.A. Thornton, Compressive stress and inert gas in Mo films sputtered from a cylindrical-post magnetron with Ne, Ar, Kr, and Xe. J. Vac. Sci. Technol. 17, 380–383 (1980)CrossRef
184.
go back to reference N. Kuratani, O. Imai, A. Ebe, S. Nishiyama, K. Ogata, Internal stress in thin films prepared by ion beam and vapor deposition. Surf. Sci. Technol. 66, 310–312 (1994) N. Kuratani, O. Imai, A. Ebe, S. Nishiyama, K. Ogata, Internal stress in thin films prepared by ion beam and vapor deposition. Surf. Sci. Technol. 66, 310–312 (1994)
185.
go back to reference M. Zeitler, Synthese and Spannungsanalyse von Bornitridschichten, hergestellt mittels ionengestützter Deposition. Disseration, University of Augsburg (1999) M. Zeitler, Synthese and Spannungsanalyse von Bornitridschichten, hergestellt mittels ionengestützter Deposition. Disseration, University of Augsburg (1999)
186.
go back to reference V. Dietz, P. Ehrhart, D. Guggi, H.-G. Haubold, W. Jäger, M. Prieler, W. Schilling, Influence of ion bombardment during deposition on mustructure of evaporated aluminum films. Nucl. Inst. Meth. in Phys. Res. B 59(60), 284–287 (1991)CrossRef V. Dietz, P. Ehrhart, D. Guggi, H.-G. Haubold, W. Jäger, M. Prieler, W. Schilling, Influence of ion bombardment during deposition on mustructure of evaporated aluminum films. Nucl. Inst. Meth. in Phys. Res. B 59(60), 284–287 (1991)CrossRef
187.
go back to reference W. Hoffman, M.R. Gaerttner, Modification of evaporated chromium by concurrent ion bombardment. J. Vac. Sci. Technol. 17, 425–428 (1980)CrossRef W. Hoffman, M.R. Gaerttner, Modification of evaporated chromium by concurrent ion bombardment. J. Vac. Sci. Technol. 17, 425–428 (1980)CrossRef
188.
go back to reference Y. Pauleau, Generation and evolution of residual stress in physical vapour-deposited thin films. Vacuum 61, 175–181 (2001)CrossRef Y. Pauleau, Generation and evolution of residual stress in physical vapour-deposited thin films. Vacuum 61, 175–181 (2001)CrossRef
189.
go back to reference R. Abermann, R. Kramer, J. Mäser, Structure and internal stress in ultra-thin silver films deposited on MgF2 and SiO. Thin Solid Films 52, 215–229 (1978)CrossRef R. Abermann, R. Kramer, J. Mäser, Structure and internal stress in ultra-thin silver films deposited on MgF2 and SiO. Thin Solid Films 52, 215–229 (1978)CrossRef
190.
go back to reference R.W. Hoffman, Stress in thin films: The relevance of grain boundaries and impurities. Thin Solid Films 34, 185–190 (1976)CrossRef R.W. Hoffman, Stress in thin films: The relevance of grain boundaries and impurities. Thin Solid Films 34, 185–190 (1976)CrossRef
191.
go back to reference W.D. Nix, B.M. Clemens, Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater Res. 14, 3467–3473 (1999)CrossRef W.D. Nix, B.M. Clemens, Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater Res. 14, 3467–3473 (1999)CrossRef
192.
go back to reference G.K. Wolf, Modification of chemical properties by ion beam-assisted deposition. Nucl. Instr. Meth. In Phys. Res. B 46, 369–378 (1990)CrossRef G.K. Wolf, Modification of chemical properties by ion beam-assisted deposition. Nucl. Instr. Meth. In Phys. Res. B 46, 369–378 (1990)CrossRef
193.
go back to reference E.H. Hirsch, I.K. Varga, Thin film annealing by ion bombardment. Thin Solid Films 69, 99–105 (1980)CrossRef E.H. Hirsch, I.K. Varga, Thin film annealing by ion bombardment. Thin Solid Films 69, 99–105 (1980)CrossRef
194.
go back to reference D.R. Brighton, G.K. Hubler, Binary collision cascade prediction of critical ion-to-atom arrival ratio in the production of thin films with reduced intrinsic stress. Nucl. Instr. Meth. in Phys. Res. B 28, 527–533 (1987)CrossRef D.R. Brighton, G.K. Hubler, Binary collision cascade prediction of critical ion-to-atom arrival ratio in the production of thin films with reduced intrinsic stress. Nucl. Instr. Meth. in Phys. Res. B 28, 527–533 (1987)CrossRef
195.
go back to reference W.D. Wilson, L.G. Haggmark, J.P. Biersack, Calculations of nuclear stopping, range, and straggling in the low-energy region. Phys. Rev. B 15, 2458–2468 (1977)CrossRef W.D. Wilson, L.G. Haggmark, J.P. Biersack, Calculations of nuclear stopping, range, and straggling in the low-energy region. Phys. Rev. B 15, 2458–2468 (1977)CrossRef
196.
go back to reference E. Chason, M. Karlson, J.J. Colin, D. Magnfält, K. Sarakinos, G. Abdadias, A kinetic model for stress generation in thin films grown from energetic vapor fluxes. J. Appl. Phys. 119, 145307 (2016) E. Chason, M. Karlson, J.J. Colin, D. Magnfält, K. Sarakinos, G. Abdadias, A kinetic model for stress generation in thin films grown from energetic vapor fluxes. J. Appl. Phys. 119, 145307 (2016)
197.
go back to reference J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diamond Rel. Mater. 2, 984–989 (1993)CrossRef J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diamond Rel. Mater. 2, 984–989 (1993)CrossRef
198.
go back to reference Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468–10480 (1990) and Subplantation model for film growth from hyperthermal Species: application to diamond. Phys. Rev. Lett. 62, 1290–1293 (1989) Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468–10480 (1990) and Subplantation model for film growth from hyperthermal Species: application to diamond. Phys. Rev. Lett. 62, 1290–1293 (1989)
199.
go back to reference F. Seitz, S. Koehler, Displacement of Atoms during Irradiation, in Solid State Physics, ed. by F. Seitz, D. Turnbull, Vol. 2, (Academic Press, New York, 1956), pp. 307–442 F. Seitz, S. Koehler, Displacement of Atoms during Irradiation, in Solid State Physics, ed. by F. Seitz, D. Turnbull, Vol. 2, (Academic Press, New York, 1956), pp. 307–442
200.
go back to reference L. Dumas, E. Quesnel, J.Y. Robic, Y. Pauleau, Characterization of magnesium fluoride thin films produced by argon ion beam-assisted deposition. Thin Solid Films 382, 61–68 (2001)CrossRef L. Dumas, E. Quesnel, J.Y. Robic, Y. Pauleau, Characterization of magnesium fluoride thin films produced by argon ion beam-assisted deposition. Thin Solid Films 382, 61–68 (2001)CrossRef
201.
go back to reference K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. I. Noble gas ion-surface interactions. J. Vac. Sci. Technol. A 16, 444–462 (1998) K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. I. Noble gas ion-surface interactions. J. Vac. Sci. Technol. A 16, 444–462 (1998)
202.
go back to reference G. Knuyt, W. Lauwerens, L.M. Stals, A unified theoretical model for tensile and compressive residual film stress. Thin Solid Films 370, 232–237 (2000)CrossRef G. Knuyt, W. Lauwerens, L.M. Stals, A unified theoretical model for tensile and compressive residual film stress. Thin Solid Films 370, 232–237 (2000)CrossRef
203.
go back to reference V.l. Popov, R. Pohrt, Q. Li, Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction 5, 308–325 (2017) V.l. Popov, R. Pohrt, Q. Li, Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction 5, 308–325 (2017)
204.
go back to reference G.K. Wolf, M. Barth, W. Ensinger, Ion beam-assisted deposition for metal finishing. Nucl. Instr. Meth. in Phys. Res. B 37(38), 682–687 (1989)CrossRef G.K. Wolf, M. Barth, W. Ensinger, Ion beam-assisted deposition for metal finishing. Nucl. Instr. Meth. in Phys. Res. B 37(38), 682–687 (1989)CrossRef
205.
go back to reference T.N. Kim, Q.L. Feng, Z.S. Luo, F.Z. Cui, J.O. Kim, Highly adhesive hydroxyapatite coatings on alumina substrates prepared by ion beam-assisted deposition. Surf. Coat. Technol. 99, 20–23 (1998)CrossRef T.N. Kim, Q.L. Feng, Z.S. Luo, F.Z. Cui, J.O. Kim, Highly adhesive hydroxyapatite coatings on alumina substrates prepared by ion beam-assisted deposition. Surf. Coat. Technol. 99, 20–23 (1998)CrossRef
206.
go back to reference J.-M. Choi, H.-E. Kim, I.-S. Lee, Ion beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21, 469–473 (2000)CrossRef J.-M. Choi, H.-E. Kim, I.-S. Lee, Ion beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21, 469–473 (2000)CrossRef
207.
go back to reference J. Zhu, Y. Hu, M. Xu, W. Yang, L. Fu, D Li, L. Zhou, Enhancement of the adhesive strength between Ag films and Mo substrate by Ag implanted via ion beam-assisted deposition. Materials 11, 762 (2018) J. Zhu, Y. Hu, M. Xu, W. Yang, L. Fu, D Li, L. Zhou, Enhancement of the adhesive strength between Ag films and Mo substrate by Ag implanted via ion beam-assisted deposition. Materials 11, 762 (2018)
208.
go back to reference L.-H. Tian, B. Tang, D.-X. Liuc, X.-D. Zhua, J.-W. He, Interfacial reactions duringIBAD and their effects on the adhesion of Cr–N coatings on steel. Surf. Coat. Technol. 191, 149–154 (2005)CrossRef L.-H. Tian, B. Tang, D.-X. Liuc, X.-D. Zhua, J.-W. He, Interfacial reactions duringIBAD and their effects on the adhesion of Cr–N coatings on steel. Surf. Coat. Technol. 191, 149–154 (2005)CrossRef
209.
go back to reference A.J. Kellock, J.E.E. Baglin, T.T. Bardin, J.G. Pronko, Adhesion improvement of Au on GaAs using ion beam-assisted deposition. Nucl. Instr. Meth in Phys. Res. B 59(60), 249–253 (1991)CrossRef A.J. Kellock, J.E.E. Baglin, T.T. Bardin, J.G. Pronko, Adhesion improvement of Au on GaAs using ion beam-assisted deposition. Nucl. Instr. Meth in Phys. Res. B 59(60), 249–253 (1991)CrossRef
210.
go back to reference Y.-T. Cheng, Thermodynamic and fractal geometric aspects of ion-solid interactions. Mater. Sci. Rep. 5, 54–97 (1990)CrossRef Y.-T. Cheng, Thermodynamic and fractal geometric aspects of ion-solid interactions. Mater. Sci. Rep. 5, 54–97 (1990)CrossRef
211.
go back to reference W. Bolse, Ion beam-induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides. Mater. Sci. Engng. R 12, 53–122 (1994)CrossRef W. Bolse, Ion beam-induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides. Mater. Sci. Engng. R 12, 53–122 (1994)CrossRef
212.
go back to reference B. Rauschenbach, M. Posselt, R. Grötschel, E. Brecht, G. Linker, O. Meyer, Ion mixing of Cu/Ti and Cu/Fe bilayers. Nucl. Instr. Meth in Phys. Res. B 69, 277–280 (1992). B. Rauschenbach, W. Erfurth, G. Linker, O. Meyer, Ion beam mixing of Cu/Ti bilayers. Nucl. Instr. Meth in Phys. Res. B 68, 438–442 (1992) B. Rauschenbach, M. Posselt, R. Grötschel, E. Brecht, G. Linker, O. Meyer, Ion mixing of Cu/Ti and Cu/Fe bilayers. Nucl. Instr. Meth in Phys. Res. B 69, 277280 (1992). B. Rauschenbach, W. Erfurth, G. Linker, O. Meyer, Ion beam mixing of Cu/Ti bilayers. Nucl. Instr. Meth in Phys. Res. B 68, 438–442 (1992)
213.
go back to reference P. Sigmund, A. Gras-Marti, Theoretical aspects of atomic mixing by ion beams. Nucl. Instr. Meth. 182(183), 25–41 (1981)CrossRef P. Sigmund, A. Gras-Marti, Theoretical aspects of atomic mixing by ion beams. Nucl. Instr. Meth. 182(183), 25–41 (1981)CrossRef
214.
go back to reference S. Aisenberg, R. Chabot, Ion beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 42, 2953–2958 (1972)CrossRef S. Aisenberg, R. Chabot, Ion beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 42, 2953–2958 (1972)CrossRef
215.
go back to reference C. Weissmantel, Reactive film preparation. Thin Solid Films 31, 11–18 (1976)CrossRef C. Weissmantel, Reactive film preparation. Thin Solid Films 31, 11–18 (1976)CrossRef
216.
go back to reference P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Review of advances in cubic boron nitride film synthesis. Mater. Sci. Engng. R 21, 47–100 (1997)CrossRef P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Review of advances in cubic boron nitride film synthesis. Mater. Sci. Engng. R 21, 47–100 (1997)CrossRef
217.
go back to reference W. Kulisch, S. Ulrich, Parameter spaces for nucleation and the subsequent growth of cubic boron nitride films. Thin Solid Films 423, 183–195 (2003)CrossRef W. Kulisch, S. Ulrich, Parameter spaces for nucleation and the subsequent growth of cubic boron nitride films. Thin Solid Films 423, 183–195 (2003)CrossRef
218.
go back to reference D.J. Kester, K.S. Ailey, R.F. Davis, Deposition and characterization of boron nitride thin films. Diamond Rel. Mater. 3, 332–336 (1994)CrossRef D.J. Kester, K.S. Ailey, R.F. Davis, Deposition and characterization of boron nitride thin films. Diamond Rel. Mater. 3, 332–336 (1994)CrossRef
219.
go back to reference J. Thomas, N.E. Weston, T.E. O’Connor, Turbostratic boron nitride, thermal transformation to order-layer-lattice boron nitride. J. Am. Chem. Soc. 84, 4619–4622 (1963)CrossRef J. Thomas, N.E. Weston, T.E. O’Connor, Turbostratic boron nitride, thermal transformation to order-layer-lattice boron nitride. J. Am. Chem. Soc. 84, 4619–4622 (1963)CrossRef
220.
go back to reference D.V. Shtansky, O. Tsuda, Y. Ikuhara, T. Yoshida, Crystallography and structural evolution of cubic boron nitride films during bias sputter deposition. Acta mater. 48, 3745–3759 (2000)CrossRef D.V. Shtansky, O. Tsuda, Y. Ikuhara, T. Yoshida, Crystallography and structural evolution of cubic boron nitride films during bias sputter deposition. Acta mater. 48, 3745–3759 (2000)CrossRef
221.
go back to reference D. Bouchier, G. Sené, M.A. Djouadi, P. Möller, Effect of noble gas ions on the synthesis of c-BN by ion beam-assisted deposition. Nucl. Instrum. Meth. in Phys Res. B 89, 369–372 (1994)CrossRef D. Bouchier, G. Sené, M.A. Djouadi, P. Möller, Effect of noble gas ions on the synthesis of c-BN by ion beam-assisted deposition. Nucl. Instrum. Meth. in Phys Res. B 89, 369–372 (1994)CrossRef
222.
go back to reference T.A. Friedmann, P.B. Mirkarimi, D.L. Medlin, K.F- McCarty, E.J. Klaus, D.R. Boehme, H.A. Johnsen, M.J. Mills, D.K. Ottesen, J.C. Barbour, Ion-assisted pulsed laser deposition of cubic boron nitride films. J. Appl. Phys. 76, 3088–3101 (1994) T.A. Friedmann, P.B. Mirkarimi, D.L. Medlin, K.F- McCarty, E.J. Klaus, D.R. Boehme, H.A. Johnsen, M.J. Mills, D.K. Ottesen, J.C. Barbour, Ion-assisted pulsed laser deposition of cubic boron nitride films. J. Appl. Phys. 76, 3088–3101 (1994)
223.
go back to reference S. Reinke, M. Kuhr, W. Kulisch, R. Kassing, Recent results in boron nitride deposition in light of sputter model. Diamond Rel. Mater. 4, 272–283 (1995)CrossRef S. Reinke, M. Kuhr, W. Kulisch, R. Kassing, Recent results in boron nitride deposition in light of sputter model. Diamond Rel. Mater. 4, 272–283 (1995)CrossRef
224.
go back to reference H. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamond like thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef H. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamond like thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef
225.
go back to reference G. H. Vineyard, Thermal spikes and activated processes. Rad. Effects Defects in Solids 29, 245–248 (1976) G. H. Vineyard, Thermal spikes and activated processes. Rad. Effects Defects in Solids 29, 245–248 (1976)
226.
go back to reference S. Reinke, M. Kuhr, W. Kulisch, Mechanism in ion induced c-BN growth. Diamond Rel. Mater. 3, 342–345 (1994)CrossRef S. Reinke, M. Kuhr, W. Kulisch, Mechanism in ion induced c-BN growth. Diamond Rel. Mater. 3, 342–345 (1994)CrossRef
227.
go back to reference D.R. McKenzie, W.D. McFall, W.G. Sainty, C.A. Davies, R.E. Collins, Compressive stress induced formation of cubic boron nitride. Diamond Rel. Mater. 2, 970–976 (1993)CrossRef D.R. McKenzie, W.D. McFall, W.G. Sainty, C.A. Davies, R.E. Collins, Compressive stress induced formation of cubic boron nitride. Diamond Rel. Mater. 2, 970–976 (1993)CrossRef
228.
go back to reference P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, W.G. Wolfer, T.A. Friedmann, R.J. Klaus, G.F. Cardinale, D.G. Howitt, On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition. J. Mater. Res. 9, 2925–2938 (1994)CrossRef P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, W.G. Wolfer, T.A. Friedmann, R.J. Klaus, G.F. Cardinale, D.G. Howitt, On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition. J. Mater. Res. 9, 2925–2938 (1994)CrossRef
229.
go back to reference D.J. Kester, R. Messier, Phase control of cubic boron nitride thin films. J. Appl. Phys. 72, 504–513 (1992)CrossRef D.J. Kester, R. Messier, Phase control of cubic boron nitride thin films. J. Appl. Phys. 72, 504–513 (1992)CrossRef
230.
go back to reference J. Robertson, The deposition mechanism of diamondlike a-C and a-C:GH. Diamond Rel. Mater. 3, 361–368 (1994)CrossRef J. Robertson, The deposition mechanism of diamondlike a-C and a-C:GH. Diamond Rel. Mater. 3, 361–368 (1994)CrossRef
231.
go back to reference D. Marton, K.J. Boyd, I.W. Rabalais, Y. Lifshitz, Semiquantitative subplantation model for low energy ion interactions with surfaces. II. Ion beam deposition of carbon and carbon nitride. J. Vac. Sci. Technol. A. 16, 455–462 (1998) D. Marton, K.J. Boyd, I.W. Rabalais, Y. Lifshitz, Semiquantitative subplantation model for low energy ion interactions with surfaces. II. Ion beam deposition of carbon and carbon nitride. J. Vac. Sci. Technol. A. 16, 455–462 (1998)
232.
go back to reference K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. III. Ion beam homoepitaxy of Si. J. Vac. Sci. Technol. A 16, 463–471 (1998) K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. III. Ion beam homoepitaxy of Si. J. Vac. Sci. Technol. A 16, 463–471 (1998)
233.
go back to reference H.K. Pulker, G. Paesold, E. Ritter, Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases. Appl. Optics 15, 2986–2991 (1976)CrossRef H.K. Pulker, G. Paesold, E. Ritter, Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases. Appl. Optics 15, 2986–2991 (1976)CrossRef
234.
go back to reference P.J. Martin, Ion based methods for optical thin film deposition. J. Mater Sci. 21, 1–25 (1986)CrossRef P.J. Martin, Ion based methods for optical thin film deposition. J. Mater Sci. 21, 1–25 (1986)CrossRef
235.
go back to reference H.-C. Chen, K.-S. Lee, C.-C. Jaing, C.-C. Lee, Enhancement of the stability of ion-assisted TiO2 thin films by using re-annealing with different substrate temperatures. Proc. SPIE 7067, 70670O (2008)CrossRef H.-C. Chen, K.-S. Lee, C.-C. Jaing, C.-C. Lee, Enhancement of the stability of ion-assisted TiO2 thin films by using re-annealing with different substrate temperatures. Proc. SPIE 7067, 70670O (2008)CrossRef
236.
go back to reference G. Wang, J.R. Brewer, F. Namavar, R.F. Sabirianov, H. Haider. K. L. Garvin, C.L. Cheung, Structural study of titanium oxide films synthesized by ion beam-assisted deposition. 30, 59–64 (2008) G. Wang, J.R. Brewer, F. Namavar, R.F. Sabirianov, H. Haider. K. L. Garvin, C.L. Cheung, Structural study of titanium oxide films synthesized by ion beam-assisted deposition. 30, 59–64 (2008)
237.
go back to reference C.-C. Jaing, H.-C. Chen, C.-C. Lee, Effects of thermal annealing on titanium oxide films prepared by ion-assisted deposition. Opt. Rev. 16, 396–399 (2009)CrossRef C.-C. Jaing, H.-C. Chen, C.-C. Lee, Effects of thermal annealing on titanium oxide films prepared by ion-assisted deposition. Opt. Rev. 16, 396–399 (2009)CrossRef
238.
go back to reference C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl. Surf. Sci. 254, 2685–2789 (2008)CrossRef C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl. Surf. Sci. 254, 2685–2789 (2008)CrossRef
239.
go back to reference F. Zhang, Z. Zheng, Y. Chen, D. Liu, X. Lu, Study on the effect of ion beam bombardment during deposition on preferred orientation in rutile-type titanium dioxide. J. Appl. Phys. 83, 4101–4105 (1998)CrossRef F. Zhang, Z. Zheng, Y. Chen, D. Liu, X. Lu, Study on the effect of ion beam bombardment during deposition on preferred orientation in rutile-type titanium dioxide. J. Appl. Phys. 83, 4101–4105 (1998)CrossRef
240.
go back to reference K. Yokota, Y. Yano, K. Nakamura, M. Ohnishi, F. Miyashita, Effects of oxygen ion beam application on crystalline structures of TiO2 films deposited on Si wafers by an ion beam-assisted deposition. Nucl. Instr. Meth. B 242, 393–395 (2002)CrossRef K. Yokota, Y. Yano, K. Nakamura, M. Ohnishi, F. Miyashita, Effects of oxygen ion beam application on crystalline structures of TiO2 films deposited on Si wafers by an ion beam-assisted deposition. Nucl. Instr. Meth. B 242, 393–395 (2002)CrossRef
241.
go back to reference I.N. Martev, Oxygen-ion-assisted deposition of TiO films. Vacuum 58, 327–334 (2000)CrossRef I.N. Martev, Oxygen-ion-assisted deposition of TiO films. Vacuum 58, 327–334 (2000)CrossRef
242.
go back to reference J.R. McNeil, A.C. Barron, S.R. Wilson, W.C. Herrmann, Ion-assisted deposition of optical thin films: low energy vs high energy bombardment. Appl. Optics 23, 552–559 (1984)CrossRef J.R. McNeil, A.C. Barron, S.R. Wilson, W.C. Herrmann, Ion-assisted deposition of optical thin films: low energy vs high energy bombardment. Appl. Optics 23, 552–559 (1984)CrossRef
243.
go back to reference A.M. Ektessabi, Ion beam-assisted sputter deposition of thin oxide films. Surf. Coat. Technol. 68–69, 208–216 (1994)CrossRef A.M. Ektessabi, Ion beam-assisted sputter deposition of thin oxide films. Surf. Coat. Technol. 68–69, 208–216 (1994)CrossRef
244.
go back to reference S. Mohan, M.G. Krishan, A review of ion beam-assisted deposition of optical thin films. Vacuum 46, 645–659 (1995)CrossRef S. Mohan, M.G. Krishan, A review of ion beam-assisted deposition of optical thin films. Vacuum 46, 645–659 (1995)CrossRef
245.
go back to reference P.J. Martin, H.A. MacLeod, R.P. Netterfield, C.G. Pacey, W.G. Sainty, Ion beam-assisted deposition of thin films. Appl. Optics 22, 178–184 (1983)CrossRef P.J. Martin, H.A. MacLeod, R.P. Netterfield, C.G. Pacey, W.G. Sainty, Ion beam-assisted deposition of thin films. Appl. Optics 22, 178–184 (1983)CrossRef
246.
go back to reference Y. Yamada, H. Uyama, T. Murata, H. Nozoye, Low temperature deposition of titanium-oxide films with refractive indices by oxygen-radical beam assisted evaporation combined with ion beams. J. Vac. Sci. Technol. A 19, 2479–2482 (2001)CrossRef Y. Yamada, H. Uyama, T. Murata, H. Nozoye, Low temperature deposition of titanium-oxide films with refractive indices by oxygen-radical beam assisted evaporation combined with ion beams. J. Vac. Sci. Technol. A 19, 2479–2482 (2001)CrossRef
247.
go back to reference J.M. Bennett, E. Pelleier, G. Albarnd, J.P. Borgogno, C. Carniglia, R.A. Schmell, T.H. Allen, T. Tuttle-Hart, K.H. Guenther, A. Saxer, Comparison of properties of tirtanium dioxide films prepared by various techniques. Appl. Optics 28, 3303–3317 (1989)CrossRef J.M. Bennett, E. Pelleier, G. Albarnd, J.P. Borgogno, C. Carniglia, R.A. Schmell, T.H. Allen, T. Tuttle-Hart, K.H. Guenther, A. Saxer, Comparison of properties of tirtanium dioxide films prepared by various techniques. Appl. Optics 28, 3303–3317 (1989)CrossRef
248.
go back to reference Q. Tang, K. Kikuchi, S. Ogura, A. Macleod, Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion beam-assisted deposition. J. Vac. Sci. Technol. A 17, 3379–3384 (1999)CrossRef Q. Tang, K. Kikuchi, S. Ogura, A. Macleod, Mechanism of columnar microstructure growth in titanium oxide thin films deposited by ion beam-assisted deposition. J. Vac. Sci. Technol. A 17, 3379–3384 (1999)CrossRef
249.
go back to reference F.L. Williams, D.E. Reicher, C.B. Jung, J.R. McNeil, Metal dioxides using ion-assisted deposition at low temperature. J. Vac. Sci. Technol. 7, 2286–2288 (1989)CrossRef F.L. Williams, D.E. Reicher, C.B. Jung, J.R. McNeil, Metal dioxides using ion-assisted deposition at low temperature. J. Vac. Sci. Technol. 7, 2286–2288 (1989)CrossRef
250.
go back to reference H. Nan, Y. Ping, C. Xuan, L. Yongxang, Z. Xiaolan, C. Guangjun, Z. Zihong, Z. Feng, C. Yuanru, L. Xianghuai, X. Tingfei, Blood compatibility of amorphous titanium oxide films synthesized by ion enhanced deposition. Biomaterials 19, 771–776 (1998)CrossRef H. Nan, Y. Ping, C. Xuan, L. Yongxang, Z. Xiaolan, C. Guangjun, Z. Zihong, Z. Feng, C. Yuanru, L. Xianghuai, X. Tingfei, Blood compatibility of amorphous titanium oxide films synthesized by ion enhanced deposition. Biomaterials 19, 771–776 (1998)CrossRef
251.
go back to reference F. Zhang, X. Liu, Y. Mao, N. Huang, Y. Chen, Z. Zheng, Z. Zhou, A. Chen, Z. Jiang, Artificial heart valves: improved hemocompatibility by titanium oxide coatings prepared by ion beam-assisted deposition. Surf. Coating Technol. 103–104, 146–150 (1998)CrossRef F. Zhang, X. Liu, Y. Mao, N. Huang, Y. Chen, Z. Zheng, Z. Zhou, A. Chen, Z. Jiang, Artificial heart valves: improved hemocompatibility by titanium oxide coatings prepared by ion beam-assisted deposition. Surf. Coating Technol. 103–104, 146–150 (1998)CrossRef
Metadata
Title
Ion Beam-Assisted Deposition
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_10

Premium Partners