Skip to main content
Top

2022 | OriginalPaper | Chapter

9. Ion Beam Deposition and Cleaning

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct deposition of low-energy ionized atoms or molecules (IBD) onto a substrate has key advantages in terms of controlling layer properties. In general, this technique is based either on the deceleration of high-energy, mass-separated ion beams or the generation of mass-separated, low-energy ion beams. The growth of the layers is primarily determined by the balance between two energy-dependent effects, deposition (sticking of deposited atoms or molecules) and sputtering. Processes such as sputtering, ion reflection, and athermal generation of defects define an energy window for successful deposition of the layers. The application of molecular ions for layer deposition is characterized by the fact that these ions are fragmented above a threshold energy. The potential of IBD with hyperthermal particles can be advantageously used in the synthesis of both stable and metastable phases in the deposited layers. As examples, the deposition of carbon and diamond-like carbon films, epitaxial silicon and germanium films, metal films and also compound films can be mentioned. High-quality thin organic films can be deposited by a specific variant of the IBD technique, the electrospray deposition. This technique, based on soft landing, allows the non-destructive deposition of large organic molecules on the surface of a substrate, when the energy of these molecules is lower than the activation energy for collision induced dissociation. This technique is presented and the deposition of selected organic layers is demonstrated. Finally, a method for cleaning surfaces by low energy ion bombardment is reviewed. It is characterized by the removal of surface contamination, adsorbates or compound layers on the surface without significantly damaging the underlying structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.M.E. Harper, Ion beam deposition, in Thin Film Processes. ed. by J.L. Vossen, W. Kern (Academic Press, New York, 1978), pp. 175–206CrossRef J.M.E. Harper, Ion beam deposition, in Thin Film Processes. ed. by J.L. Vossen, W. Kern (Academic Press, New York, 1978), pp. 175–206CrossRef
2.
go back to reference K. Miyaka, T. Tokuyama, Direct ion beam deposition, in Ion Beam Assisted Film Deposition, ed. by T. Itoh, (Elsevier Science, Amsterdam 1989), pp. 289–317 K. Miyaka, T. Tokuyama, Direct ion beam deposition, in Ion Beam Assisted Film Deposition, ed. by T. Itoh, (Elsevier Science, Amsterdam 1989), pp. 289–317
3.
go back to reference J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, (Eds.) Handbook of ion beam processing, Noyes Publ. Westwood 1989 J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, (Eds.) Handbook of ion beam processing, Noyes Publ. Westwood 1989
4.
go back to reference D.G. Amour, Ion beam deposition. Nucl. Instr. Meth. Phys. Res. B 89, 325–331 (1994)CrossRef D.G. Amour, Ion beam deposition. Nucl. Instr. Meth. Phys. Res. B 89, 325–331 (1994)CrossRef
5.
go back to reference D. Marton, Film deposition from low-energy ion beams, in Low-Energy Ion-Surface Interaction, ed. by J.W. Rabalais, (Wiley, Chichester 1994), pp. 481–534 D. Marton, Film deposition from low-energy ion beams, in Low-Energy Ion-Surface Interaction, ed. by J.W. Rabalais, (Wiley, Chichester 1994), pp. 481–534
6.
go back to reference K. Miyaka, Ion-beam deposition, in Fundamentals and the Present Status of Purification of Metals. ed. by Y. Wasada, M. Isshiki (Springer, Berlin, Heidelberg, 2002), pp. 203–222 K. Miyaka, Ion-beam deposition, in Fundamentals and the Present Status of Purification of Metals. ed. by Y. Wasada, M. Isshiki (Springer, Berlin, Heidelberg, 2002), pp. 203–222
7.
go back to reference O. Almén, G. Bruce, Collection and sputtering experiments with noble gas ions. Nucl. Instr. Meth. 11, 257–278 (1961)CrossRef O. Almén, G. Bruce, Collection and sputtering experiments with noble gas ions. Nucl. Instr. Meth. 11, 257–278 (1961)CrossRef
8.
go back to reference A. Fontell, E. Arminen, Direct collection of some metal ions in electromagnetic isotope separator and related surface effects. Canad. J. Phys. 47, 2405–2414 (1969)CrossRef A. Fontell, E. Arminen, Direct collection of some metal ions in electromagnetic isotope separator and related surface effects. Canad. J. Phys. 47, 2405–2414 (1969)CrossRef
9.
go back to reference R.B. Fair, Analysis and design of ion-beam deposition apparatus. J. Appl. Phys. 42, 3176–3181 (1971)CrossRef R.B. Fair, Analysis and design of ion-beam deposition apparatus. J. Appl. Phys. 42, 3176–3181 (1971)CrossRef
10.
go back to reference V. Franchetti, B.H. Solka, W.E. Baitinger, J.W. Amy, R.G. Cooks, Soft landing of ions as a means of surface modification. Int. J. Mass Spectrom. Ion Process 23, 29–35 (1977)CrossRef V. Franchetti, B.H. Solka, W.E. Baitinger, J.W. Amy, R.G. Cooks, Soft landing of ions as a means of surface modification. Int. J. Mass Spectrom. Ion Process 23, 29–35 (1977)CrossRef
11.
go back to reference J.M.E. Harper, Effects of beam, target, and substrate potentials in ion beam processing. Thin Solid Films 92, 107–114 (1982)CrossRef J.M.E. Harper, Effects of beam, target, and substrate potentials in ion beam processing. Thin Solid Films 92, 107–114 (1982)CrossRef
12.
go back to reference B. Wolf (ed.), Handbook of Ion Sources (CRC Press, Boca Raton, 1995) B. Wolf (ed.), Handbook of Ion Sources (CRC Press, Boca Raton, 1995)
13.
go back to reference N. Sasaki, S. Shimizu, S. Ogata, Thin film growth using a high-current, mass-separated low energy ion beam deposition system. Thin Solid Films 281–282, 175–178 (1996)CrossRef N. Sasaki, S. Shimizu, S. Ogata, Thin film growth using a high-current, mass-separated low energy ion beam deposition system. Thin Solid Films 281–282, 175–178 (1996)CrossRef
14.
go back to reference G.E. Thomas, L.J. Beckers, J.J. Vrakking, B.R. de Koning, Ion beam epiplantation. J. Cryst. Growth 56, 557–575 (1982)CrossRef G.E. Thomas, L.J. Beckers, J.J. Vrakking, B.R. de Koning, Ion beam epiplantation. J. Cryst. Growth 56, 557–575 (1982)CrossRef
15.
go back to reference J. Ahn, R.P.W. Lawson, K.M. Yoo, K.A. Stromsmoe, M.J. Brett, Deposition of metastable binary alloy thin films using sequential ion beams from a single ion source. Nucl. Instr. Meth Phys. Res. B 17, 37–45 (1986)CrossRef J. Ahn, R.P.W. Lawson, K.M. Yoo, K.A. Stromsmoe, M.J. Brett, Deposition of metastable binary alloy thin films using sequential ion beams from a single ion source. Nucl. Instr. Meth Phys. Res. B 17, 37–45 (1986)CrossRef
16.
go back to reference A. van Veen, Ion trapping and cluster growth, in Erosion and Growth of Solids Stimulated by Atom and Ion Beams, ed. by G. Kiriakidis, G. Carter, J.L. Whitton, (Martinus Nijhoff Publ., Dordrecht 1986), pp. 200–221 A. van Veen, Ion trapping and cluster growth, in Erosion and Growth of Solids Stimulated by Atom and Ion Beams, ed. by G. Kiriakidis, G. Carter, J.L. Whitton, (Martinus Nijhoff Publ., Dordrecht 1986), pp. 200–221
17.
go back to reference N. Herbots, B.R. Appleton, T.S. Noggle, R.A. Zuhr, S.J. Pennycook, Ion-solid interaction during ion beam deposition of 47Ge and 30Si on Si at very low energies (0–200 eV) range. Nucl. Instr. Meth Phys. Res. B 13, 250–258 (1986)CrossRef N. Herbots, B.R. Appleton, T.S. Noggle, R.A. Zuhr, S.J. Pennycook, Ion-solid interaction during ion beam deposition of 47Ge and 30Si on Si at very low energies (0–200 eV) range. Nucl. Instr. Meth Phys. Res. B 13, 250–258 (1986)CrossRef
18.
go back to reference S.M. Rossnagel, Directional and preferential sputtering -basedphysical vapor deposition. Thin Solid Films 263, 1–12 (1995)CrossRef S.M. Rossnagel, Directional and preferential sputtering -basedphysical vapor deposition. Thin Solid Films 263, 1–12 (1995)CrossRef
19.
go back to reference J.W. Rabalais, D. Marton, Atomic collisions in surface chemistry and film deposition. Nucl. Instr. Meth Phys. Res. B 67, 287–295 (1992)CrossRef J.W. Rabalais, D. Marton, Atomic collisions in surface chemistry and film deposition. Nucl. Instr. Meth Phys. Res. B 67, 287–295 (1992)CrossRef
20.
go back to reference B.W. Dobson, Atomistic simulation of silicon beam deposition Phys. Rev. B 36, 1068–1074 (1987) and Molecular-dynamics simulation of low-energy beam deposition of silicon, J. Vac. Sci. Technol. B 5, 1393–1398 (1987) B.W. Dobson, Atomistic simulation of silicon beam deposition Phys. Rev. B 36, 10681074 (1987) and Molecular-dynamics simulation of low-energy beam deposition of silicon, J. Vac. Sci. Technol. B 5, 1393–1398 (1987)
21.
go back to reference X.W. Zhou, H.N.G. Wadley, Hyperthermal vapor deposition of copper: reflection and resputtering effects. Surf. Sci. 431, 58–73 (1999)CrossRef X.W. Zhou, H.N.G. Wadley, Hyperthermal vapor deposition of copper: reflection and resputtering effects. Surf. Sci. 431, 58–73 (1999)CrossRef
22.
go back to reference S.S. Todorov, E.R. Fassum, Oxidation of silicon by a low-energy ion beam: experiment and model. Appl. Phys. Lett. 52, 48–50 (1988)CrossRef S.S. Todorov, E.R. Fassum, Oxidation of silicon by a low-energy ion beam: experiment and model. Appl. Phys. Lett. 52, 48–50 (1988)CrossRef
23.
go back to reference J. Amano, Direct ion beam deposition for thin film formation. Thin. Solid Films 92, 115–122 (1982)CrossRef J. Amano, Direct ion beam deposition for thin film formation. Thin. Solid Films 92, 115–122 (1982)CrossRef
24.
go back to reference N. Herbots, O.C. Hellman, P. Ye, X. Wang, O. Vancauwenberghe, Chemical reactions during thin-film synthesis: Ion-beam oxidation (IBO) and ion-beam nitration (IBN) of semiconductor surfaces, in Low-Energy Ion-Surface Interaction, ed. by J.W. Rabalais, (Wiley, Chichester 1994), pp. 387–480 N. Herbots, O.C. Hellman, P. Ye, X. Wang, O. Vancauwenberghe, Chemical reactions during thin-film synthesis: Ion-beam oxidation (IBO) and ion-beam nitration (IBN) of semiconductor surfaces, in Low-Energy Ion-Surface Interaction, ed. by J.W. Rabalais, (Wiley, Chichester 1994), pp. 387–480
25.
go back to reference O. Vancauwenberghe, N. Herbots, O.C. Hellman, Role of ion energy in ion beam oxidation of semiconductors: experimental study and mode, J. Vac, Sci. Technol. A 10, 713–718 (1992) and O. Vancauwenberghe, On the growth of semiconductor-based epitaxial and oxide films from low energy ion beams, Dissertation, MIT, Cambridge, Mass. 1991 O. Vancauwenberghe, N. Herbots, O.C. Hellman, Role of ion energy in ion beam oxidation of semiconductors: experimental study and mode, J. Vac, Sci. Technol. A 10, 713–718 (1992) and O. Vancauwenberghe, On the growth of semiconductor-based epitaxial and oxide films from low energy ion beams, Dissertation, MIT, Cambridge, Mass. 1991
26.
go back to reference O. Vancauwenberghe, N. Herbots, O.C. Hellman, A quantitative model of point defect diffusivity and recombination in ion beam deposition and combined ion and molecular vapor deposition. J. Vac. Sci. Technol. B 9, 2027–2033 (1991)CrossRef O. Vancauwenberghe, N. Herbots, O.C. Hellman, A quantitative model of point defect diffusivity and recombination in ion beam deposition and combined ion and molecular vapor deposition. J. Vac. Sci. Technol. B 9, 2027–2033 (1991)CrossRef
27.
go back to reference N. Herbots, O. Vancauwenberghe, O.C. Hellman, Y.C. Joo, Atomic collisions, elastic recombination, and thermal diffusion during thin-film growth from low-energy ion beams. Nucl. Instr. Meth Phys. Res. B 59(60), 326–331 (1991)CrossRef N. Herbots, O. Vancauwenberghe, O.C. Hellman, Y.C. Joo, Atomic collisions, elastic recombination, and thermal diffusion during thin-film growth from low-energy ion beams. Nucl. Instr. Meth Phys. Res. B 59(60), 326–331 (1991)CrossRef
28.
go back to reference T.Y. Tan, U. Gösele, Point defects, diffusion processes, and swirl defect formation in silicon. Appl. Phys. A 37, 1–17 (1985)CrossRef T.Y. Tan, U. Gösele, Point defects, diffusion processes, and swirl defect formation in silicon. Appl. Phys. A 37, 1–17 (1985)CrossRef
29.
go back to reference V. Grill, J. Shen, C. Evans, R.G. Cooks, Collisions of ions with surface at chemically relevant energies: Instrumentation and phenomena. Rev. Sci. Instr. 72, 3149–3179 (2001)CrossRef V. Grill, J. Shen, C. Evans, R.G. Cooks, Collisions of ions with surface at chemically relevant energies: Instrumentation and phenomena. Rev. Sci. Instr. 72, 3149–3179 (2001)CrossRef
30.
go back to reference B. Gologan, J.R. Green, J. Alvarez, J. Laskin, G. Cooks, Ion/surface reactions and soft-landing. Phys. Chem. Chem. Phys. 7, 1490–1500 (2005)CrossRef B. Gologan, J.R. Green, J. Alvarez, J. Laskin, G. Cooks, Ion/surface reactions and soft-landing. Phys. Chem. Chem. Phys. 7, 1490–1500 (2005)CrossRef
31.
go back to reference S. Hayakawa, Charge inversion mass spectrometry: dissociation of resonantly neutralized molecules. J. Mass Spectrom. 39, 111–135 (2004)CrossRef S. Hayakawa, Charge inversion mass spectrometry: dissociation of resonantly neutralized molecules. J. Mass Spectrom. 39, 111–135 (2004)CrossRef
32.
go back to reference D.C. Jacobs, Reactive collisions of hyperthermal energy molecular ions with solid surfaces. Annu. Rev. Phys. Chem. 53, 379–407 (2002)CrossRef D.C. Jacobs, Reactive collisions of hyperthermal energy molecular ions with solid surfaces. Annu. Rev. Phys. Chem. 53, 379–407 (2002)CrossRef
33.
go back to reference L. Krumbein, K. Anggara, M. Stella, T. Michnowicz, H. Ochner, S. Abb, G. Rinke, A. Portz, M. Dürr, U. Schlickum, A. Baldwin, A. Floris, K. Kern, S. Rauschenbach, Fast molecular compression by a hyperthermal collision gives bond-selective mechanochemistry. Phys. Rev. Lett. 126, 056001 (2001) L. Krumbein, K. Anggara, M. Stella, T. Michnowicz, H. Ochner, S. Abb, G. Rinke, A. Portz, M. Dürr, U. Schlickum, A. Baldwin, A. Floris, K. Kern, S. Rauschenbach, Fast molecular compression by a hyperthermal collision gives bond-selective mechanochemistry. Phys. Rev. Lett. 126, 056001 (2001)
34.
go back to reference W. Jacob, J. Roth, Chemical sputtering in Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies, ed. by R. Behrisch, W. Eckstein, (Springer, Berlin, 2007), pp. 329–400 W. Jacob, J. Roth, Chemical sputtering in Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies, ed. by R. Behrisch, W. Eckstein, (Springer, Berlin, 2007), pp. 329–400
35.
go back to reference N. Sakudo, K. Hayashi, Exact energy values of low-energy ion beams. Rev. Sci. Instr. 67, 1218–1220 (1996)CrossRef N. Sakudo, K. Hayashi, Exact energy values of low-energy ion beams. Rev. Sci. Instr. 67, 1218–1220 (1996)CrossRef
36.
go back to reference N. Sakudo, K. Hayashi, N. Ikenaga, N. Sakaguchi, K. Moriike, K. Fujimura, M. Okada, T. Maesaka, Factors determining energy values of ion beams for ion-beam deposition. Nucl. Instr. Meth. Phys. Res. B 148, 53–57 (1999)CrossRef N. Sakudo, K. Hayashi, N. Ikenaga, N. Sakaguchi, K. Moriike, K. Fujimura, M. Okada, T. Maesaka, Factors determining energy values of ion beams for ion-beam deposition. Nucl. Instr. Meth. Phys. Res. B 148, 53–57 (1999)CrossRef
37.
go back to reference S.R. Kasi, M.A. Kilburn, H. Kang, J.W. Rabalais, L. Tavernini, P. Hochmann, Interaction of low energy reactive ions with surfaces. III. Scattering of 30–200 eV Ne+, O+, C+, and CO+ from Ni(111), J. Chem. Phys. 88, 5902–5913 (1988) S.R. Kasi, M.A. Kilburn, H. Kang, J.W. Rabalais, L. Tavernini, P. Hochmann, Interaction of low energy reactive ions with surfaces. III. Scattering of 30–200 eV Ne+, O+, C+, and CO+ from Ni(111), J. Chem. Phys. 88, 5902–5913 (1988)
38.
go back to reference T. Michely, C. Teichert, adatom yields, sputterings, and damage patterns of single-ion impacts on Pt(111). Phys. Rev. B 50, 11156–11566 (1994)CrossRef T. Michely, C. Teichert, adatom yields, sputterings, and damage patterns of single-ion impacts on Pt(111). Phys. Rev. B 50, 11156–11566 (1994)CrossRef
39.
go back to reference D.K. Brice, J.Y. Tsao, S.T. Picraux, Partitioning of ion-induced surface and bulk displacements. Nucl. Instr. Meth. Phys. Res. B 44, 68–78 (1989)CrossRef D.K. Brice, J.Y. Tsao, S.T. Picraux, Partitioning of ion-induced surface and bulk displacements. Nucl. Instr. Meth. Phys. Res. B 44, 68–78 (1989)CrossRef
40.
go back to reference Z.Q. Ma, Optimal energies for ion-assisted growth of IVA thin films. Intern. J. Mod. Phys. B 21, 4299–4322 (2007)CrossRef Z.Q. Ma, Optimal energies for ion-assisted growth of IVA thin films. Intern. J. Mod. Phys. B 21, 4299–4322 (2007)CrossRef
41.
go back to reference H.D. Hagstrum, Studies of adsorbate electronic structure using ion neutralization and photoemission spectroscopies, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermanns, J. Vennik, W. Dekeyser, (Plenum Press, New Your 1978), pp. 273–323 H.D. Hagstrum, Studies of adsorbate electronic structure using ion neutralization and photoemission spectroscopies, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermanns, J. Vennik, W. Dekeyser, (Plenum Press, New Your 1978), pp. 273–323
42.
go back to reference D. Marton, K.J. Boyd, T. Lytle, J.W. Rabalais, Auger-electron spectroscopy of krypton subplanted in graphite. Surf. Sci. 282, 113–121 (1993)CrossRef D. Marton, K.J. Boyd, T. Lytle, J.W. Rabalais, Auger-electron spectroscopy of krypton subplanted in graphite. Surf. Sci. 282, 113–121 (1993)CrossRef
43.
go back to reference S.R. Kasi, H. Kang, J.W. Rabalais, Interaction of low energy reactive ions with surfaces. IV. Chemically bonded diamond-like films from ion-beam deposition. J. Chem. Phys. 88, 5914–5924 (1988) S.R. Kasi, H. Kang, J.W. Rabalais, Interaction of low energy reactive ions with surfaces. IV. Chemically bonded diamond-like films from ion-beam deposition. J. Chem. Phys. 88, 5914–5924 (1988)
44.
go back to reference M. Mensing, P. Schumacher, J.W. Gerlach, S. Herath, A. Lotnyk, B. Rauschenbach, Influence of nitrogen ion species on mass-selected low energy ion-assisted growth of epitaxial GaN thin films. Appl. Surf. Sci. 498, 143830 (2019) M. Mensing, P. Schumacher, J.W. Gerlach, S. Herath, A. Lotnyk, B. Rauschenbach, Influence of nitrogen ion species on mass-selected low energy ion-assisted growth of epitaxial GaN thin films. Appl. Surf. Sci. 498, 143830 (2019)
45.
go back to reference H. Akazawa, Y. Murata, Interaction of reactive ions with Pt(100). II. Dissociative scattering of molecular ions near the threshold energy region. J. Chem Phys. 92, 5561–5568 (1990) H. Akazawa, Y. Murata, Interaction of reactive ions with Pt(100). II. Dissociative scattering of molecular ions near the threshold energy region. J. Chem Phys. 92, 5561–5568 (1990)
46.
go back to reference S.R. Kasi, H. Kang, C.S. Sass, J.W. Rabalais, Inelastic processes in low-energy ion surface collisions, Surf. Sci. Rep. 10, 1–104 (1989) S.R. Kasi, H. Kang, C.S. Sass, J.W. Rabalais, Inelastic processes in low-energy ion surface collisions, Surf. Sci. Rep. 10, 1–104 (1989)
47.
go back to reference B.N. Chapman, D.S. Campbell, Condensation of high-energy atomic beams. J. Phys. C 2, 200–209 (1969)CrossRef B.N. Chapman, D.S. Campbell, Condensation of high-energy atomic beams. J. Phys. C 2, 200–209 (1969)CrossRef
48.
go back to reference G.E. Lane, J.C. Anderson, The nucleation and initial growth of gold films deposited onto sodium chloride by ion-beam sputtering. Thin Solid Films 26, 5–23 (1975). Features of initial growth of gold films deposited on rock-salt substrates by ion beam sputtering. Thin Solid Films 57, 277–283 (1979) G.E. Lane, J.C. Anderson, The nucleation and initial growth of gold films deposited onto sodium chloride by ion-beam sputtering. Thin Solid Films 26, 523 (1975). Features of initial growth of gold films deposited on rock-salt substrates by ion beam sputtering. Thin Solid Films 57, 277–283 (1979)
49.
go back to reference M.-A. Hasan, S.A. Barnett, J.-E. Sundgren, J.E. Greene, Nucleation and initial growth of In deposited on Si3N4 using low-energy (<300 eV) accelerated beams in ultrahigh vacuum. J. Vac. Sci. Technol. A 5, 1883–1887 (1987)CrossRef M.-A. Hasan, S.A. Barnett, J.-E. Sundgren, J.E. Greene, Nucleation and initial growth of In deposited on Si3N4 using low-energy (<300 eV) accelerated beams in ultrahigh vacuum. J. Vac. Sci. Technol. A 5, 1883–1887 (1987)CrossRef
50.
go back to reference S. Esch, M. Bott T. Michely, G. Comsa, Nucleation of homoepitaxial films grown with ion assistance on Pt(111). Appl. Phys. Lett. 67, 3209–3211 (1995). S. Esch, M. Breeman, M. Morgenstern, T. Michely, G. Comsa, Nucleation and morphology of homoepitaxial Pt(111)-films grown with ion beam assisted deposition. Surf. Sci. 365, 187–204 (1996) S. Esch, M. Bott T. Michely, G. Comsa, Nucleation of homoepitaxial films grown with ion assistance on Pt(111). Appl. Phys. Lett. 67, 32093211 (1995). S. Esch, M. Breeman, M. Morgenstern, T. Michely, G. Comsa, Nucleation and morphology of homoepitaxial Pt(111)-films grown with ion beam assisted deposition. Surf. Sci. 365, 187–204 (1996)
51.
go back to reference M. Kaff, M. Breeman, M. Morgenstern, T. Michely, G. Comsa, Effect of energetic particles on island formation in sputter deposition of Pt on Pt(111). Appl Phys Lett. 70, 182–184 (1997)CrossRef M. Kaff, M. Breeman, M. Morgenstern, T. Michely, G. Comsa, Effect of energetic particles on island formation in sputter deposition of Pt on Pt(111). Appl Phys Lett. 70, 182–184 (1997)CrossRef
52.
go back to reference J. M. Pomeroy, A. Couture, J. Jacobsen, C.C. Hill, J.P. Sethna, B.H. Cooper, J.D. Brock, STM characterization of Cu thin films grown by direct ion deposition. Vol. 648, Proceed. MRS (2000), P7.3 J. M. Pomeroy, A. Couture, J. Jacobsen, C.C. Hill, J.P. Sethna, B.H. Cooper, J.D. Brock, STM characterization of Cu thin films grown by direct ion deposition. Vol. 648, Proceed. MRS (2000), P7.3
53.
go back to reference B. Degroote, A. Vantomme, H. Pattyn, K. Vanormelingen, Hyperthermal effects on nucleation and growth during low-energy ion deposition. Phys. Rev. B 65, 195401 (2002) B. Degroote, A. Vantomme, H. Pattyn, K. Vanormelingen, Hyperthermal effects on nucleation and growth during low-energy ion deposition. Phys. Rev. B 65, 195401 (2002)
54.
go back to reference J. M. Pomeroy, J. Jacobsen, C.C. Hill, B.H. Cooper, J.P. Sethna, Kinetic Monte Carlo–molecular dynamics investigations of hyperthermal copper deposition on Cu(111), Phys. Rev. B 66, 235412 (2002) J. M. Pomeroy, J. Jacobsen, C.C. Hill, B.H. Cooper, J.P. Sethna, Kinetic Monte Carlo–molecular dynamics investigations of hyperthermal copper deposition on Cu(111), Phys. Rev. B 66, 235412 (2002)
55.
go back to reference J. Jacobsen, B.H. Cooper, J.P. Sethna, Simulations of energetic beam deposition: from picoseconds to seconds. Phys. Rev. B 58, 15847–15865 (1998)CrossRef J. Jacobsen, B.H. Cooper, J.P. Sethna, Simulations of energetic beam deposition: from picoseconds to seconds. Phys. Rev. B 58, 15847–15865 (1998)CrossRef
56.
go back to reference Z.Q. Ma, Y.F. Zheng, B.X. Liu, Ion-induced surface and bulk displacement threshold for epitaxial growth. Phys. Stat. Sol. (a) 169, 239–248 (1998). Sketching of preferred energy regime for ion beam assisted epitaxy. App. Surf. Sci. 137, 184–190 (1999) Z.Q. Ma, Y.F. Zheng, B.X. Liu, Ion-induced surface and bulk displacement threshold for epitaxial growth. Phys. Stat. Sol. (a) 169, 239248 (1998). Sketching of preferred energy regime for ion beam assisted epitaxy. App. Surf. Sci. 137, 184–190 (1999)
57.
go back to reference S. Mohajerzadeh, C.R. Selvakumar, A simple model for low energy ion-solid interactions. J. Appl. Phys. 81, 3003–3006 (1997)CrossRef S. Mohajerzadeh, C.R. Selvakumar, A simple model for low energy ion-solid interactions. J. Appl. Phys. 81, 3003–3006 (1997)CrossRef
58.
go back to reference N.A. Kuboto, D.J. Economou, S.J. Plimpton, Molecular dynamics simulations of low-energy (25–200 eV) argon ion interactions with silicon surfaces: sputter yields and product formation pathways. J. Appl. Phys. 83, 4056–4063 (1998) N.A. Kuboto, D.J. Economou, S.J. Plimpton, Molecular dynamics simulations of low-energy (25–200 eV) argon ion interactions with silicon surfaces: sputter yields and product formation pathways. J. Appl. Phys. 83, 4056–4063 (1998)
59.
go back to reference J.P. Chang, J.C. Arnold, G.C.H. Zau, H.-S. Shin, H.H. Sawin, Kinetic study of low energy argon ion-enhanced plasma etching pf polysilicon with atomic/molecular chlorine. J. Vac. Sci. Technol. A 15, 1853–1863 (1967)CrossRef J.P. Chang, J.C. Arnold, G.C.H. Zau, H.-S. Shin, H.H. Sawin, Kinetic study of low energy argon ion-enhanced plasma etching pf polysilicon with atomic/molecular chlorine. J. Vac. Sci. Technol. A 15, 1853–1863 (1967)CrossRef
60.
go back to reference C.R. Laurens, M.F. Roşu, F. Pleiter, L. Nielsen, Soft-landing ion deposition of isolated radioactive probe atoms on surfaces: a novel method. Phys. Rev. Lett. 78, 4075–4078 (1997)CrossRef C.R. Laurens, M.F. Roşu, F. Pleiter, L. Nielsen, Soft-landing ion deposition of isolated radioactive probe atoms on surfaces: a novel method. Phys. Rev. Lett. 78, 4075–4078 (1997)CrossRef
61.
go back to reference A.H. Al-Bayati, K.J. Boyd, D. Marton, S.S. Todorov, J.W. Rabalais, Z.H. Zhang, W.K. Chu, Substrate temperature dependence of homoepitaxial growth of Si using mass selected ion beam deposition. J. Appl. Phys. 76, 4383–4389 (1994)CrossRef A.H. Al-Bayati, K.J. Boyd, D. Marton, S.S. Todorov, J.W. Rabalais, Z.H. Zhang, W.K. Chu, Substrate temperature dependence of homoepitaxial growth of Si using mass selected ion beam deposition. J. Appl. Phys. 76, 4383–4389 (1994)CrossRef
62.
go back to reference M.V. Murty, H.A. Atwater, Defect generation and morphology of (001) Si surface during Ar-ion bombardment. Phys. Rev. B 45, 1507–1510 (1992)CrossRef M.V. Murty, H.A. Atwater, Defect generation and morphology of (001) Si surface during Ar-ion bombardment. Phys. Rev. B 45, 1507–1510 (1992)CrossRef
63.
go back to reference M. Morgenstern, T. Michely, G. Comsa, Collective effects in the adatom production by 4.5 keV rare-gas impacts on Pt(111): a low temperature scanning tunnelling microscopy analysis. Phil. Mag. A 79, 775–794 (1999) M. Morgenstern, T. Michely, G. Comsa, Collective effects in the adatom production by 4.5 keV rare-gas impacts on Pt(111): a low temperature scanning tunnelling microscopy analysis. Phil. Mag. A 79, 775–794 (1999)
64.
go back to reference M. Ghaly, K. Nordlund, R.S. Averback, Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Phil. Mag. A 79, 795–820 (1999)CrossRef M. Ghaly, K. Nordlund, R.S. Averback, Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Phil. Mag. A 79, 795–820 (1999)CrossRef
65.
go back to reference G. Carter, Island-density and size dynamics in ion-assisted atomic deposition. Vacuum 55, 235–247 (1999). See also H.H. Anderson, The depth resolution of sputter profiling, Appl. Phys. 18, 131-140 (1979)CrossRef G. Carter, Island-density and size dynamics in ion-assisted atomic deposition. Vacuum 55, 235–247 (1999). See also H.H. Anderson, The depth resolution of sputter profiling, Appl. Phys. 18, 131-140 (1979)CrossRef
66.
go back to reference K.-H. Müller, Role of incident kinetic energy of adatoms in thin film growth. Surf. Sci. 184, L375–L382 (1987)CrossRef K.-H. Müller, Role of incident kinetic energy of adatoms in thin film growth. Surf. Sci. 184, L375–L382 (1987)CrossRef
67.
go back to reference R. Ditchfeld, E.G., Seebauer, Semiconductor surface diffusion: effects of low-energy ion bombardment, Phys. Rev. B 63, 125317 (2001) R. Ditchfeld, E.G., Seebauer, Semiconductor surface diffusion: effects of low-energy ion bombardment, Phys. Rev. B 63, 125317 (2001)
68.
go back to reference R. Ditchfeld, E.G., Seebauer, Direct measurement of ion-influenced surface diffusion. Phys. Rev. Lett. 82, 1185–1188 (1999) R. Ditchfeld, E.G., Seebauer, Direct measurement of ion-influenced surface diffusion. Phys. Rev. Lett. 82, 1185–1188 (1999)
69.
go back to reference W.F. Engelhoff, I. Jacob, Reflection high-energy electron diffraction (RHEED) oscillations at 77 K. Phys. Rev. Lett. 63, 921–924 (89). R. Kunkel, B. Poelsema, L. K. Verheij, G. Comsa, Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. Phys. Rev. Lett. 65, 733–736 (1990) W.F. Engelhoff, I. Jacob, Reflection high-energy electron diffraction (RHEED) oscillations at 77 K. Phys. Rev. Lett. 63, 921924 (89). R. Kunkel, B. Poelsema, L. K. Verheij, G. Comsa, Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. Phys. Rev. Lett. 65, 733–736 (1990)
70.
go back to reference X.W. Zhou, H.N.G. Wadley, Hyperthermal vapor deposition of copper: athermal and biased diffusion effects. Surf. Sci. 431, 42–57 (1999)CrossRef X.W. Zhou, H.N.G. Wadley, Hyperthermal vapor deposition of copper: athermal and biased diffusion effects. Surf. Sci. 431, 42–57 (1999)CrossRef
71.
go back to reference D.E. Sanders, A. E. DePristo, Metal/metal homo-epitaxy on fcc (001) surfaces: Is there transient mobility of adsorbed atoms? Surf. Sci. 254 (1991) 341–353 (1991). P. Stoltze and J.K. Nørskov, Accommodation and diffusion of Cu deposited on flat and stepped Cu(111) surfaces. Phys. Rev. B 48 (1993) 5607–5611 D.E. Sanders, A. E. DePristo, Metal/metal homo-epitaxy on fcc (001) surfaces: Is there transient mobility of adsorbed atoms? Surf. Sci. 254 (1991) 341353 (1991). P. Stoltze and J.K. Nørskov, Accommodation and diffusion of Cu deposited on flat and stepped Cu(111) surfaces. Phys. Rev. B 48 (1993) 5607–5611
72.
go back to reference D. Adamovic, E.P. Münger, V. Chirita, L. Hultman, J.E. Greene, Low-energy ion irradiation during film growth: Kinetic pathways leading to enhanced adatom migration, Appl. Phys. Lett. 86, 211915 (2005). D. Adamovic, V. Chirita, E.P. Münger, L. Hultman, J.E. Greene, Enhanced intra- and interlayer mass transport on Pt(111) via 5–50 eV Pt atom impacts on two-dimensional Pt clusters. Thin Solid Films 515, 2235–2243 (2006) D. Adamovic, E.P. Münger, V. Chirita, L. Hultman, J.E. Greene, Low-energy ion irradiation during film growth: Kinetic pathways leading to enhanced adatom migration, Appl. Phys. Lett. 86, 211915 (2005). D. Adamovic, V. Chirita, E.P. Münger, L. Hultman, J.E. Greene, Enhanced intra- and interlayer mass transport on Pt(111) via 550 eV Pt atom impacts on two-dimensional Pt clusters. Thin Solid Films 515, 2235–2243 (2006)
73.
go back to reference J. Sillanpaä, I. Koponen, Island growth in ion beam assisted metal-on-metal deposition modelled by rate equations. Nucl. Instr. Meth. Phys. Res. B 142, 67–76 (1998)CrossRef J. Sillanpaä, I. Koponen, Island growth in ion beam assisted metal-on-metal deposition modelled by rate equations. Nucl. Instr. Meth. Phys. Res. B 142, 67–76 (1998)CrossRef
74.
go back to reference E.F.C. Haddeman, B.S. Bunnik, B.J. Thijsse, Thin film growth and ion-beam modification: MD simulations going beyond simple systems, in Fundamental Mechanisms of Low-Energy-Beam-Modified Surface Growth and Processing, ed. by S.C. Moss, E.H. Chason, B.H. Cooper, J.M.E. Harper, T.D. de la Rubia, M.V.R. Murty, Vol. 585, Mater. Rec. Soc., Symp. Proceed. (2000), pp. 103–106 E.F.C. Haddeman, B.S. Bunnik, B.J. Thijsse, Thin film growth and ion-beam modification: MD simulations going beyond simple systems, in Fundamental Mechanisms of Low-Energy-Beam-Modified Surface Growth and Processing, ed. by S.C. Moss, E.H. Chason, B.H. Cooper, J.M.E. Harper, T.D. de la Rubia, M.V.R. Murty, Vol. 585, Mater. Rec. Soc., Symp. Proceed. (2000), pp. 103–106
75.
go back to reference J.J. Quan, X.W. Zhou, H.N.G. Wadley, Atomic assembly of metal surfaces and interfaces. Surf. Sci. 600, 4537–4547 (2006)CrossRef J.J. Quan, X.W. Zhou, H.N.G. Wadley, Atomic assembly of metal surfaces and interfaces. Surf. Sci. 600, 4537–4547 (2006)CrossRef
76.
go back to reference T. Huhtamäki, M.O. Jahma, I.T. Koponen, A simple model for quantifying the degree of layer-to-layer growth in low energy ion deposition of thin films. Nucl. Instr. Meth. in Phys. Res. B 264, 55–60 (2007)CrossRef T. Huhtamäki, M.O. Jahma, I.T. Koponen, A simple model for quantifying the degree of layer-to-layer growth in low energy ion deposition of thin films. Nucl. Instr. Meth. in Phys. Res. B 264, 55–60 (2007)CrossRef
77.
go back to reference Q. Fu, T. Wagner, Diffusion-corrected simultaneous multilayer growth model, Phys. Rev. Lett. 90, 106105 (2003) Q. Fu, T. Wagner, Diffusion-corrected simultaneous multilayer growth model, Phys. Rev. Lett. 90, 106105 (2003)
78.
go back to reference B. Schultrich, Tetrahedrally Bonded Amorphous Carbon Films, Springer-Series in Materials Sciences, Vol. 263 (Springer, Berlin, 2018) B. Schultrich, Tetrahedrally Bonded Amorphous Carbon Films, Springer-Series in Materials Sciences, Vol. 263 (Springer, Berlin, 2018)
79.
go back to reference S. Aisenberg, R. Chabot, Ion-beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 42, 2953–2958 (1972). S. Aisenberg, R. Chabot, Physics of ion plating and ion beam deposition. J. Vac. Sci. Technol. 10, 104–107 (1973) S. Aisenberg, R. Chabot, Ion-beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 42, 29532958 (1972). S. Aisenberg, R. Chabot, Physics of ion plating and ion beam deposition. J. Vac. Sci. Technol. 10, 104–107 (1973)
80.
go back to reference J. Ishikawa, Y. Takeiri, K. Ogawa, T. Takagi, Transparent carbon films prepared by mass-separated negative-carbon-ion-beam deposition. J. Appl. Phys. 61, 2509–2515 (1987). J. Ishikawa, K. Ogawa, K. Miyata, H. Tsuji, T. Takagi, Negative ion source (NIABNIS) and preparation of transparent carbon films by negative carbon ion beam deposition. Nucl. Instr. Meth. Phys. Res. B 21, 205–208 (1987) J. Ishikawa, Y. Takeiri, K. Ogawa, T. Takagi, Transparent carbon films prepared by mass-separated negative-carbon-ion-beam deposition. J. Appl. Phys. 61, 25092515 (1987). J. Ishikawa, K. Ogawa, K. Miyata, H. Tsuji, T. Takagi, Negative ion source (NIABNIS) and preparation of transparent carbon films by negative carbon ion beam deposition. Nucl. Instr. Meth. Phys. Res. B 21, 205–208 (1987)
81.
go back to reference P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B. 48, 4777–4782 (1993). Erratum: Phys. Rev. B 49, 2287 (1993) P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B. 48, 4777–4782 (1993). Erratum: Phys. Rev. B 49, 2287 (1993)
82.
go back to reference D.R. McKenzie, D. Muller, B.A. Pailthorpe, Z.H. Wang, E. Kravtchinskaja, D. Segal, P.B. Lukins, P.D. Swift, P.J. Martin, G. Amaraunga, P.H. Gaskell, A. Saeed, Properties of tetrahedral amorphous carbon prepared by vacuum arc deposition. Diamond Rel. Mater. 1, 51–59 (1991)CrossRef D.R. McKenzie, D. Muller, B.A. Pailthorpe, Z.H. Wang, E. Kravtchinskaja, D. Segal, P.B. Lukins, P.D. Swift, P.J. Martin, G. Amaraunga, P.H. Gaskell, A. Saeed, Properties of tetrahedral amorphous carbon prepared by vacuum arc deposition. Diamond Rel. Mater. 1, 51–59 (1991)CrossRef
83.
go back to reference J.P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila, Preparation and properties of high density, hydrogen free hard carbon films with direct ion beam or arc discharge deposition, in Properties and Characterization of Amorphous Carbon Films, ed. by J.J. Pouch, S.A. Alterovitz, (Trans Tech Publications, Zürich 1990) pp. 197–216 J.P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila, Preparation and properties of high density, hydrogen free hard carbon films with direct ion beam or arc discharge deposition, in Properties and Characterization of Amorphous Carbon Films, ed. by J.J. Pouch, S.A. Alterovitz, (Trans Tech Publications, Zürich 1990) pp. 197–216
84.
go back to reference Y. Lifshitz, G.D. Lempert, S. Rotter, I. Avigal, C. Uzan-Saguy, R. Kalish, D. Marton, J.W. Rabalais, The effect of ion energy on the diamond-like/graphitic (sp3/sp2) nature of carbon films deposited by ion beams. Diamond Rel. Mater. 3, 542–546 (1994)CrossRef Y. Lifshitz, G.D. Lempert, S. Rotter, I. Avigal, C. Uzan-Saguy, R. Kalish, D. Marton, J.W. Rabalais, The effect of ion energy on the diamond-like/graphitic (sp3/sp2) nature of carbon films deposited by ion beams. Diamond Rel. Mater. 3, 542–546 (1994)CrossRef
85.
go back to reference E. Grossman, G.D. Lampert, J. Kulik, D. Marton, J.W. Rabalais, Y. Lifshitz, Role of ion energy in determination of the sp3 fraction of ion beam deposited carbon films, Appl. Phys. Lett. 68, 1214–1216 (1996) E. Grossman, G.D. Lampert, J. Kulik, D. Marton, J.W. Rabalais, Y. Lifshitz, Role of ion energy in determination of the sp3 fraction of ion beam deposited carbon films, Appl. Phys. Lett. 68, 1214–1216 (1996)
86.
go back to reference D. Marton, K.J. Boyd, I.W. Rabalais, Y. Lifshitz, Semiquantitative subplantation model for low energy ion interactions with surfaces. II. Ion beam deposition of carbon and carbon nitride. J. Vac. Sci. Technol. A. 16, 455–462 (1998) D. Marton, K.J. Boyd, I.W. Rabalais, Y. Lifshitz, Semiquantitative subplantation model for low energy ion interactions with surfaces. II. Ion beam deposition of carbon and carbon nitride. J. Vac. Sci. Technol. A. 16, 455–462 (1998)
87.
go back to reference J. Kulik, G.D. Lempert, E. Grossman, D. Marton, J.W. Rabalais, Y. Lifshitz, sp3 content of mass-selected-ion-beam-deposited carbon films determined by inelastic and elastic electrons scattering. Phys. Rev. B 52, 151812–215822 (1995)CrossRef J. Kulik, G.D. Lempert, E. Grossman, D. Marton, J.W. Rabalais, Y. Lifshitz, sp3 content of mass-selected-ion-beam-deposited carbon films determined by inelastic and elastic electrons scattering. Phys. Rev. B 52, 151812–215822 (1995)CrossRef
88.
go back to reference J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989)CrossRef J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989)CrossRef
89.
go back to reference D.R. McKenzie, Tetrahedral bonding in amorphous carbon. Rep. Prog. Phys. 59, 1611–1664 (1996)CrossRef D.R. McKenzie, Tetrahedral bonding in amorphous carbon. Rep. Prog. Phys. 59, 1611–1664 (1996)CrossRef
90.
go back to reference D.R. McKenzie, D. Muller, B.A. Pailthorpe, Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773–776 (1991)CrossRef D.R. McKenzie, D. Muller, B.A. Pailthorpe, Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773–776 (1991)CrossRef
91.
go back to reference C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30–34 (1993)CrossRef C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30–34 (1993)CrossRef
92.
go back to reference Y. Lifshitz, G.D. Lempert, E. Grossman, Substantiation of subplantation model for diamondlike film growth by atomic force microscopy. Phys. Rev. Lett. 72, 2753–2757 (1994)CrossRef Y. Lifshitz, G.D. Lempert, E. Grossman, Substantiation of subplantation model for diamondlike film growth by atomic force microscopy. Phys. Rev. Lett. 72, 2753–2757 (1994)CrossRef
93.
go back to reference Y. Lifshitz, G.D. Lempert, E. Grossman, I. Avigal, C. Uzan-Saguy, R. Kalish, J. Kulik, D. Marton, J.W. Rabalais, Growth mechanisms of DLC films from C+ ions: experimental studies. Diamond Rel. Mater. 4, 318–323 (1995)CrossRef Y. Lifshitz, G.D. Lempert, E. Grossman, I. Avigal, C. Uzan-Saguy, R. Kalish, J. Kulik, D. Marton, J.W. Rabalais, Growth mechanisms of DLC films from C+ ions: experimental studies. Diamond Rel. Mater. 4, 318–323 (1995)CrossRef
94.
go back to reference M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, C.A. Davis G.A.J. Amaratunga, W.I. Milne, Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81, 139–145 (1997) M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, C.A. Davis G.A.J. Amaratunga, W.I. Milne, Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81, 139–145 (1997)
95.
go back to reference W.M. Lau, I. Bello, X. Feng, L.J. Huang, Q. Fuguang, Y. Zhenyu, R. Zhizhang, S.-T. Lee, Direct ion beam deposition of carbon films on silicon in the ion energy range of 15–500 eV. J. App. Phys. 70, 5623–5628 (1991)CrossRef W.M. Lau, I. Bello, X. Feng, L.J. Huang, Q. Fuguang, Y. Zhenyu, R. Zhizhang, S.-T. Lee, Direct ion beam deposition of carbon films on silicon in the ion energy range of 15–500 eV. J. App. Phys. 70, 5623–5628 (1991)CrossRef
96.
go back to reference D.R. McKenzie, Generation and applications of compressive stress induced by low energy ion beam bombardment. J. Vac. Sci. Technol. B 11, 1928–1935 (1993)CrossRef D.R. McKenzie, Generation and applications of compressive stress induced by low energy ion beam bombardment. J. Vac. Sci. Technol. B 11, 1928–1935 (1993)CrossRef
97.
go back to reference I. Koponen, M. Harkovirta, R. Lappalainen, Modeling the ion energy dependence of the sp2/sp3 bonding ratio in amorphous diamondlike films produced with a mass-separated ion beam. J. Appl. Phys. 78, 5837–5839 (1995)CrossRef I. Koponen, M. Harkovirta, R. Lappalainen, Modeling the ion energy dependence of the sp2/sp3 bonding ratio in amorphous diamondlike films produced with a mass-separated ion beam. J. Appl. Phys. 78, 5837–5839 (1995)CrossRef
98.
go back to reference H.C. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamondlike thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef H.C. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamondlike thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef
99.
go back to reference J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon, Diam. Relat. Mater. 2, 984–989 (1993). The deposition mechanism of diamond-like a-C and a-C:H, Diam. Relat. Mater. 3, 361–368 (1994) J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon, Diam. Relat. Mater. 2, 984–989 (1993). The deposition mechanism of diamond-like a-C and a-C:H, Diam. Relat. Mater. 3, 361–368 (1994)
100.
go back to reference J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)CrossRef J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)CrossRef
101.
go back to reference K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. I. Noble gas ion-surface interactions. J. Vac. Sci. Technol. A 16, 444–462 (1998) K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. I. Noble gas ion-surface interactions. J. Vac. Sci. Technol. A 16, 444–462 (1998)
102.
go back to reference G. Carter, Spike and shock processes in high energy deposition density atomic collision events in solids. Rad. Eff. Lett. 43, 193–199 (1979). A semi quantitative approach to impact induced shock processes in solids. Rad. Eff. Lett. 50, 105–109 (1980) G. Carter, Spike and shock processes in high energy deposition density atomic collision events in solids. Rad. Eff. Lett. 43, 193199 (1979). A semi quantitative approach to impact induced shock processes in solids. Rad. Eff. Lett. 50, 105–109 (1980)
103.
go back to reference B. Rauschenbach, K. Hohmuth, A simple approach to the analysis of ion collision cascade in solids based on the shock wave model. Phys. Status Solidi (a) 75, 159–168 (1983). Analysis of heavy-ion sputtering based on the shock wave model. Phys. Status Solidi (a) 79, 395–401 (1983) B. Rauschenbach, K. Hohmuth, A simple approach to the analysis of ion collision cascade in solids based on the shock wave model. Phys. Status Solidi (a) 75, 159–168 (1983). Analysis of heavy-ion sputtering based on the shock wave model. Phys. Status Solidi (a) 79, 395–401 (1983)
104.
go back to reference E.G. Spencer, P.H. Schmidt, D.C. Joy, F.J. Sansalone, Ion-beam-deposited polycrystalline diamond-like films. Appl. Phys. Lett. 29, 118–120 (1976) E.G. Spencer, P.H. Schmidt, D.C. Joy, F.J. Sansalone, Ion-beam-deposited polycrystalline diamond-like films. Appl. Phys. Lett. 29, 118–120 (1976)
105.
go back to reference Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species: application to diamond. Phys. Rev. Lett 62, 1290–1293 (1987). Subplantation model for film growth from hyperthermal species. Phy. Rev. B 41, 10468–10480 (1990) Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species: application to diamond. Phys. Rev. Lett 62, 12901293 (1987). Subplantation model for film growth from hyperthermal species. Phy. Rev. B 41, 10468–10480 (1990)
106.
go back to reference H.-P. Kaukonen, R.M. Nieminen, Molecular-dynamics simulation of the growth of diamondlike films by energetic carbon-atom beams. Phys. Rev. Lett. 68, 620–623 (1992)CrossRef H.-P. Kaukonen, R.M. Nieminen, Molecular-dynamics simulation of the growth of diamondlike films by energetic carbon-atom beams. Phys. Rev. Lett. 68, 620–623 (1992)CrossRef
107.
go back to reference H.J. Steffen, D. Marton J.W. Rabalais, Displacement energy threshold for Ne+ irradiation of graphite, Phys. Rev. Lett. 68, 1726–1729 (1992). J. Koike, D.M. Parkin, T.E. Mitchell, Displacement threshold energy for type IIa diamond. Appl. Phys. Lett. 60, 1450–1452 (1992) H.J. Steffen, D. Marton J.W. Rabalais, Displacement energy threshold for Ne+ irradiation of graphite, Phys. Rev. Lett. 68, 17261729 (1992). J. Koike, D.M. Parkin, T.E. Mitchell, Displacement threshold energy for type IIa diamond. Appl. Phys. Lett. 60, 1450–1452 (1992)
108.
go back to reference N.A. Marks, D.R. McKienzie, B.A. Pailthorpe, Molecular-dynamics study of compressive stress generation. Phys. Rev. B 53, 4117–4127 (1996)CrossRef N.A. Marks, D.R. McKienzie, B.A. Pailthorpe, Molecular-dynamics study of compressive stress generation. Phys. Rev. B 53, 4117–4127 (1996)CrossRef
109.
go back to reference S. Zhang, H.T. Johnson, G.J. Wagner, W.K. Liu, K.J. Hsia, Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Mater. 51, 5211–5222 (2003)CrossRef S. Zhang, H.T. Johnson, G.J. Wagner, W.K. Liu, K.J. Hsia, Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Mater. 51, 5211–5222 (2003)CrossRef
110.
go back to reference R.A. Zuhr, B.R. Appleton, N. Herbots, B.C. Larson, T.S. Noggle, S.J. Pennycook, Low-temperture epitaxy of Si and Ge by direct ion beam deposition. J. Vac. Sci. Technol A 5, 2135–2139 (1987). R.A. Zuhr, S.J. Pennycook, T.S. Noggle, N. Herbots, T.E. Haynes, B.R. Appleton, Ion beam deposition in materials research. Nucl. Instrum. Methods Phys. Res. B 37/38, 16–21 (1989) R.A. Zuhr, B.R. Appleton, N. Herbots, B.C. Larson, T.S. Noggle, S.J. Pennycook, Low-temperture epitaxy of Si and Ge by direct ion beam deposition. J. Vac. Sci. Technol A 5, 21352139 (1987). R.A. Zuhr, S.J. Pennycook, T.S. Noggle, N. Herbots, T.E. Haynes, B.R. Appleton, Ion beam deposition in materials research. Nucl. Instrum. Methods Phys. Res. B 37/38, 16–21 (1989)
111.
go back to reference K.G. Orrman-Rossiter, D. R. G. Mitchell, S.E. Donnelly, C.J. Rossouw, S.R. Glanvill, P.R. Miller, A.H. Al-Bayati, J.A. van den Berg, D.G. Armour, Evidence for competing growth phases in ion-beam-deposited epitaxial silicon films, Philos. Mag. Lett. 61, 311–318 (1990). K.J. Orrman-Rossiter, A.H. Al-Bayati, D.G. Armour, S.E. Donnely, J.A. van den Berg, Ion beam deposited epitaxial thin silicon films, Nucl. Instrum. Methods Phys. Res. B 59/60, 197–202 (1991) K.G. Orrman-Rossiter, D. R. G. Mitchell, S.E. Donnelly, C.J. Rossouw, S.R. Glanvill, P.R. Miller, A.H. Al-Bayati, J.A. van den Berg, D.G. Armour, Evidence for competing growth phases in ion-beam-deposited epitaxial silicon films, Philos. Mag. Lett. 61, 311318 (1990). K.J. Orrman-Rossiter, A.H. Al-Bayati, D.G. Armour, S.E. Donnely, J.A. van den Berg, Ion beam deposited epitaxial thin silicon films, Nucl. Instrum. Methods Phys. Res. B 59/60, 197–202 (1991)
112.
go back to reference M. Matsuoka, S. Tohno, Ion beam epitaxy of silicon films in an ultrahigh vacuum using a sputtering-type metal ion source. J. Vac. Sci. Technol. A 13, 305–331 (1995)CrossRef M. Matsuoka, S. Tohno, Ion beam epitaxy of silicon films in an ultrahigh vacuum using a sputtering-type metal ion source. J. Vac. Sci. Technol. A 13, 305–331 (1995)CrossRef
113.
go back to reference M.V.R. Murty, H.A. Atwater, A.J. Kellock, J.E.E. Baglin, Very low temperature (<400 °C) silicon molecular beam epitaxy: The role of low energy ion irradiation, Appl. Phys. Lett. 62, 2566–2568 (1993). M.V. R. Murty, H.A. Atwater, Crystal-state - amorphous-state transition in low-temperature silicon epitaxy. Phys. Rev. B 49, 8483–8486 (1994) M.V.R. Murty, H.A. Atwater, A.J. Kellock, J.E.E. Baglin, Very low temperature (<400 °C) silicon molecular beam epitaxy: The role of low energy ion irradiation, Appl. Phys. Lett. 62, 25662568 (1993). M.V. R. Murty, H.A. Atwater, Crystal-state - amorphous-state transition in low-temperature silicon epitaxy. Phys. Rev. B 49, 8483–8486 (1994)
114.
go back to reference N.-E. Lee, G.A. Tomasch, J.E. Greene, Low-temperature Si(001) epitaxy using low-energy (< E> ≈ 18 eV) Si atoms. Appl. Phys. Lett. 63, 3236–3238 (1994)CrossRef N.-E. Lee, G.A. Tomasch, J.E. Greene, Low-temperature Si(001) epitaxy using low-energy (< E> ≈ 18 eV) Si atoms. Appl. Phys. Lett. 63, 3236–3238 (1994)CrossRef
115.
go back to reference J.W. Rabalais, A.H. Al-Bayati, K.J. Boyd, D. Marton, J. Kulik, Z. Zhang, W.K. Chu, Ion-energy effects in silicon ion-beam epitaxy. Phys. Rev. B 53, 10781–10792 (1996)CrossRef J.W. Rabalais, A.H. Al-Bayati, K.J. Boyd, D. Marton, J. Kulik, Z. Zhang, W.K. Chu, Ion-energy effects in silicon ion-beam epitaxy. Phys. Rev. B 53, 10781–10792 (1996)CrossRef
116.
go back to reference K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. III. Ion beam homoepitaxy of Si, J. Vac. Sci. Technol. A 16, 463–471 (1998) K.J. Boyd, D. Marton, J.W. Rabalais, S. Uhlmann, T. Frauenheim, Semiquantitative subplantation model for low energy ion interactions with surfaces. III. Ion beam homoepitaxy of Si, J. Vac. Sci. Technol. A 16, 463–471 (1998)
117.
go back to reference D. Marton, K.J. Boyd, J.W. Rabalais, Hyperthermal particle enhanced silicon epitaxy. Chem. Phys. Lett. 283, 215–220 (1998)CrossRef D. Marton, K.J. Boyd, J.W. Rabalais, Hyperthermal particle enhanced silicon epitaxy. Chem. Phys. Lett. 283, 215–220 (1998)CrossRef
118.
go back to reference Z. Wang, E. Seebauer, Temperature-dependent energy thresholds for ion-stimulated defect formation in solids: effects of ion mass and adsorbate–substrate pairing, Surf. Sci. 601, 2453–2458 (2007). Z. Wang, E. Seebauer, Temperature-dependent energy thresholds for ion-stimulated defect formation in solids. Phys, Rev. Lett. 95, 015501 (2005) Z. Wang, E. Seebauer, Temperature-dependent energy thresholds for ion-stimulated defect formation in solids: effects of ion mass and adsorbate–substrate pairing, Surf. Sci. 601, 24532458 (2007). Z. Wang, E. Seebauer, Temperature-dependent energy thresholds for ion-stimulated defect formation in solids. Phys, Rev. Lett. 95, 015501 (2005)
119.
go back to reference S.S. Todorov, H. Bu, K.J. Boyd, J.W. Rabalais, C.M. Gilmore, J.A. Sprague, Ion beam deposition of 107Ag(111) films on Ni(100). Surf. Sci. 429, 63–70 (1999)CrossRef S.S. Todorov, H. Bu, K.J. Boyd, J.W. Rabalais, C.M. Gilmore, J.A. Sprague, Ion beam deposition of 107Ag(111) films on Ni(100). Surf. Sci. 429, 63–70 (1999)CrossRef
120.
go back to reference R.A. Zuhr, T.E. Hayes, M.D. Galloway, S. Tanaka, A. Yamada, I. Yamada, Formation of aluminium films on silicon by ion beam deposition. A comparison with ionized cluster beam deposition, Oak Ridge Nat. Laboratory Report CONF-900936 (1991) R.A. Zuhr, T.E. Hayes, M.D. Galloway, S. Tanaka, A. Yamada, I. Yamada, Formation of aluminium films on silicon by ion beam deposition. A comparison with ionized cluster beam deposition, Oak Ridge Nat. Laboratory Report CONF-900936 (1991)
121.
go back to reference S. Shimizu, N. Sasaki, S. Ogata, O. Tsukakoshi, S. Seki, H. Yamakawa, Thin film growth using low-energy multi-ion beam deposition system, in Low Energy Ion Beam and Plasma Modification of Materials, ed. by M. Gorbatkin, J.M.E. Harper, J.R. McNeil, K. Miyake, Mater. Res. Soc., Symp. Proceed. Vol. 223 (1991) pp. 347–352 S. Shimizu, N. Sasaki, S. Ogata, O. Tsukakoshi, S. Seki, H. Yamakawa, Thin film growth using low-energy multi-ion beam deposition system, in Low Energy Ion Beam and Plasma Modification of Materials, ed. by M. Gorbatkin, J.M.E. Harper, J.R. McNeil, K. Miyake, Mater. Res. Soc., Symp. Proceed. Vol. 223 (1991) pp. 347–352
122.
go back to reference R.A. Zuhr, S.J. Pennycook, T.E. Haynes, O.W. Holland, Metal silicides formed by direct ion beam deposition. Mater. Res. Soc. Symp. Proceed. 128, 47–54 (1988) R.A. Zuhr, S.J. Pennycook, T.E. Haynes, O.W. Holland, Metal silicides formed by direct ion beam deposition. Mater. Res. Soc. Symp. Proceed. 128, 47–54 (1988)
123.
go back to reference A. Bousetta, A.H. Al Bayati, J.A. van den Berg, D.G. Armour, Structural and electrical properties of Co grown on Si (111) by low energy ion beam deposition. Appl. Surf. Sci. 56–58, 480–485 (1992) A. Bousetta, A.H. Al Bayati, J.A. van den Berg, D.G. Armour, Structural and electrical properties of Co grown on Si (111) by low energy ion beam deposition. Appl. Surf. Sci. 56–58, 480–485 (1992)
124.
go back to reference O. Tsukakoshi, S. Shimizu, S. Ogata, N. Sasaki, H. Yamakawa, A high-current low-energy multi-ion beam deposition system. Nucl. Instr. Meth Phys. Res. B 55, 355–358 (1991)CrossRef O. Tsukakoshi, S. Shimizu, S. Ogata, N. Sasaki, H. Yamakawa, A high-current low-energy multi-ion beam deposition system. Nucl. Instr. Meth Phys. Res. B 55, 355–358 (1991)CrossRef
125.
go back to reference T. Ohnishi, Y. Yoshida, Y. Hirofuji, H. lwasaki, Ta2O5 film formation by double ion beam method. Nucl. Instr. Meth. B 37/38, 850–853 (1989) T. Ohnishi, Y. Yoshida, Y. Hirofuji, H. lwasaki, Ta2O5 film formation by double ion beam method. Nucl. Instr. Meth. B 37/38, 850–853 (1989)
126.
go back to reference S. Tamura, M. Hyouzho, K. Yokota, S. Katayama, Growth of crystalline GaAs films on Si substrates by Ga and As ion beams. Nucl. Instr. Meth. B 37(38), 862–865 (1989)CrossRef S. Tamura, M. Hyouzho, K. Yokota, S. Katayama, Growth of crystalline GaAs films on Si substrates by Ga and As ion beams. Nucl. Instr. Meth. B 37(38), 862–865 (1989)CrossRef
127.
go back to reference Y. Morishita, S. Maruno, T. Isu, Y. Nomura, H. Ogata, Electrical and optical properties of InP grown by MBE using P+ ion beam. J. Cryst. Growth 88, 215–220 (1988)CrossRef Y. Morishita, S. Maruno, T. Isu, Y. Nomura, H. Ogata, Electrical and optical properties of InP grown by MBE using P+ ion beam. J. Cryst. Growth 88, 215–220 (1988)CrossRef
128.
go back to reference A. Gottdang, K. Eich, A. Hassenbürger, W.H. Schulte, B. Cleff, D.J.W. Mous, R. Koudijs, G.F.A. van der Walle, J. Politiek, A dual source low-energy ion implantation system for use in silicon molecular beam epitaxy. Nucl. Instr. Meth in Phys. Res. B 55, 310–313 (1991)CrossRef A. Gottdang, K. Eich, A. Hassenbürger, W.H. Schulte, B. Cleff, D.J.W. Mous, R. Koudijs, G.F.A. van der Walle, J. Politiek, A dual source low-energy ion implantation system for use in silicon molecular beam epitaxy. Nucl. Instr. Meth in Phys. Res. B 55, 310–313 (1991)CrossRef
129.
go back to reference T.E. Haynes, R.A. Zuhr, S.J. Pennycook, B.R. Appleton, Heteroepitxy of GaAs on Si and Ge using alternating, low-energy ion beams. Appl. Phys. Left. 54, 1439–1441 (1989)CrossRef T.E. Haynes, R.A. Zuhr, S.J. Pennycook, B.R. Appleton, Heteroepitxy of GaAs on Si and Ge using alternating, low-energy ion beams. Appl. Phys. Left. 54, 1439–1441 (1989)CrossRef
130.
go back to reference S.P. Withrow, K.L. Moore, R.A. Zuhr, T.E. Haynes, Ion beam deposition of β-SiC layers onto α-SiC substrates. Vacuum 39, 1065–1068 (1989)CrossRef S.P. Withrow, K.L. Moore, R.A. Zuhr, T.E. Haynes, Ion beam deposition of β-SiC layers onto α-SiC substrates. Vacuum 39, 1065–1068 (1989)CrossRef
131.
go back to reference J. Ahn, R.P.W. Lawson, K.M. Yoo, K.A. Stromsmoe, M.J. Brett, Deposition of metastable binary alloy thin films using sequential ion beams from a single source. Nucl. Instr. Meth in Phys. Res. B 17, 37–45 (1986)CrossRef J. Ahn, R.P.W. Lawson, K.M. Yoo, K.A. Stromsmoe, M.J. Brett, Deposition of metastable binary alloy thin films using sequential ion beams from a single source. Nucl. Instr. Meth in Phys. Res. B 17, 37–45 (1986)CrossRef
132.
go back to reference Y. Yoshida, T. Ohnishi, T. Sekihara, Y. Hirofuji, Low-energy double-ion-beam deposition system, Jpn. J. App. Phys. 27, 140–143 (1988). Y. Yoshida, T. Ohnishi, Y. Hirofuji, H. Iwasaki, T. Ikeda, low-energy double ion-beam deposition of compound films. Nucl. Instr. Meth. in Phys. Res. B 37/38, 866–869 (1989) Y. Yoshida, T. Ohnishi, T. Sekihara, Y. Hirofuji, Low-energy double-ion-beam deposition system, Jpn. J. App. Phys. 27, 140143 (1988). Y. Yoshida, T. Ohnishi, Y. Hirofuji, H. Iwasaki, T. Ikeda, low-energy double ion-beam deposition of compound films. Nucl. Instr. Meth. in Phys. Res. B 37/38, 866–869 (1989)
133.
go back to reference S. Maruno, Y. Morishita, T. Isu, Y. Nomura, H. Ogata, Growth mechanisms of molecular beam epitaxy of InP and GaAsxP1-x. Sci. 201, 335–344 (1988) S. Maruno, Y. Morishita, T. Isu, Y. Nomura, H. Ogata, Growth mechanisms of molecular beam epitaxy of InP and GaAsxP1-x. Sci. 201, 335–344 (1988)
134.
go back to reference T. Matsumoto, M. Kiuchi, S. Sugimoto, S. Goto, Momentum effects of molecular ion beam in Sic crystal growth. Thin Solid Films 464–465, 103–106 (2004)CrossRef T. Matsumoto, M. Kiuchi, S. Sugimoto, S. Goto, Momentum effects of molecular ion beam in Sic crystal growth. Thin Solid Films 464–465, 103–106 (2004)CrossRef
135.
go back to reference M. Mitsui, S. Nagaoka, T. Matsumoto, A. Nakajima, Soft-landing isolation of vanadium-benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Phys. Chem. B 110, 2968–2971 (2006) M. Mitsui, S. Nagaoka, T. Matsumoto, A. Nakajima, Soft-landing isolation of vanadium-benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Phys. Chem. B 110, 2968–2971 (2006)
136.
go back to reference G.E. Johnson, J. Laskin, Preparation of surface organometallic catalysts by gas-phase ligand stripping and reactive landing of mass-selected ions. Chem. Eur. J. 16, 14433–14438 (2010)CrossRef G.E. Johnson, J. Laskin, Preparation of surface organometallic catalysts by gas-phase ligand stripping and reactive landing of mass-selected ions. Chem. Eur. J. 16, 14433–14438 (2010)CrossRef
137.
go back to reference B. Gologan, Z. Takats, J. Alvarez, J.M. Wiseman, N. Talaty, Z. Ouyang, R.G. Cooks, Ion soft-landing into liquids: protein identification, separation, and purification with retention of biological activity. J. Am. Soc. Mass Spectrom. 15, 1874–1884 (2004)CrossRef B. Gologan, Z. Takats, J. Alvarez, J.M. Wiseman, N. Talaty, Z. Ouyang, R.G. Cooks, Ion soft-landing into liquids: protein identification, separation, and purification with retention of biological activity. J. Am. Soc. Mass Spectrom. 15, 1874–1884 (2004)CrossRef
138.
go back to reference T.A. Blake, O.Y. Zheng, J.M. Wiseman, Z. Takats, A.J. Guymon, S. Kothari, R.G. Cooks, Preparative linear ion trap mass spectrometer for separation and collection of purified proteins and peptides in arrays using ion soft landing. Anal. Chem. 76, 6293–6305 (2004)CrossRef T.A. Blake, O.Y. Zheng, J.M. Wiseman, Z. Takats, A.J. Guymon, S. Kothari, R.G. Cooks, Preparative linear ion trap mass spectrometer for separation and collection of purified proteins and peptides in arrays using ion soft landing. Anal. Chem. 76, 6293–6305 (2004)CrossRef
139.
go back to reference M. Volny, W.T. Elam, A. Branca, B.D. Ratner, F. Turecek, Preparative soft and reactive landing of multiply charged protein ions on a plasma-treated metal surface. Anal. Chem. 77, 4890–4896 (2005)CrossRef M. Volny, W.T. Elam, A. Branca, B.D. Ratner, F. Turecek, Preparative soft and reactive landing of multiply charged protein ions on a plasma-treated metal surface. Anal. Chem. 77, 4890–4896 (2005)CrossRef
140.
go back to reference V.A. Mikhailov, T.H. Mize, J.L.P. Benesch, C.V. Robinson, Mass-selective soft-landing of protein assemblies with controlled landing energies. Anal. Chem. 86, 8321–8328 (2014)CrossRef V.A. Mikhailov, T.H. Mize, J.L.P. Benesch, C.V. Robinson, Mass-selective soft-landing of protein assemblies with controlled landing energies. Anal. Chem. 86, 8321–8328 (2014)CrossRef
141.
go back to reference Z. Deng, N. Thontasen, N. Malinowski, G. Rinke, L. Harnau, S. Rauschenbach, K. Kern, A close look at proteins: submolecular resolution of two- and three-dimensionally folded cytochrome at surfaces. Nano Lett. 12, 2452–2458 (2012)CrossRef Z. Deng, N. Thontasen, N. Malinowski, G. Rinke, L. Harnau, S. Rauschenbach, K. Kern, A close look at proteins: submolecular resolution of two- and three-dimensionally folded cytochrome at surfaces. Nano Lett. 12, 2452–2458 (2012)CrossRef
142.
go back to reference S. Rauschenbach, F.L. Stadler, E. Lunedei, N. Malinowski, S. Koltsov, G. Costantini, K. Kern, Electrospray ion beam deposition of clusters and biomolecules. Small 2, 540–547 (2006)CrossRef S. Rauschenbach, F.L. Stadler, E. Lunedei, N. Malinowski, S. Koltsov, G. Costantini, K. Kern, Electrospray ion beam deposition of clusters and biomolecules. Small 2, 540–547 (2006)CrossRef
143.
go back to reference X.L. Yang, P.S. Mayer, F. Turecek, Preparative separation of a multicomponent peptide mixture by mass spectrometry. J. Mass Spectrom. 41, 256–262 (2006)CrossRef X.L. Yang, P.S. Mayer, F. Turecek, Preparative separation of a multicomponent peptide mixture by mass spectrometry. J. Mass Spectrom. 41, 256–262 (2006)CrossRef
144.
go back to reference O. Hadjar, P. Wang, J.H. Futrell, J. Laskin, Effect of the surface on charge reduction and desorption kinetics of soft landed peptide ions. J. Am. Soc. Mass Spectrom. 20, 901–906 (2009)CrossRef O. Hadjar, P. Wang, J.H. Futrell, J. Laskin, Effect of the surface on charge reduction and desorption kinetics of soft landed peptide ions. J. Am. Soc. Mass Spectrom. 20, 901–906 (2009)CrossRef
145.
go back to reference J. Laskin, P. Wang, O. Hadjar, Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. Phys. Chem. Chem. Phys. 10, 1079–1090 (2008)CrossRef J. Laskin, P. Wang, O. Hadjar, Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. Phys. Chem. Chem. Phys. 10, 1079–1090 (2008)CrossRef
146.
go back to reference S. Rauschenbach, G. Rinke, R. Gutzler, S. Abb, A. Albarghash, D. Le, T.S. Rahman, M. pDürr, L. Harnau, K. Kern, Two-dimensional folding of polypeptides into molecular nanostructures at surfaces. ACS Nano 11, 2420–2427 (2017) S. Rauschenbach, G. Rinke, R. Gutzler, S. Abb, A. Albarghash, D. Le, T.S. Rahman, M. pDürr, L. Harnau, K. Kern, Two-dimensional folding of polypeptides into molecular nanostructures at surfaces. ACS Nano 11, 2420–2427 (2017)
147.
go back to reference S. Abb, L. Harnau, R. Gutzler, S. Rauschenbach, K. Kern, Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides. Nature Comm. 7, 10335 (2016)CrossRef S. Abb, L. Harnau, R. Gutzler, S. Rauschenbach, K. Kern, Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides. Nature Comm. 7, 10335 (2016)CrossRef
148.
go back to reference B.B. Feng, D.S. Wunschel, C.D. Masselon, L. Pasa-Tolic, R.D. Smith, Retrieval of DNA using softlanding after mass analysis by ESI-FTICR for enzymatic manipulation. J. Am. Chem. Soc. 121, 8961–8962 (1999)CrossRef B.B. Feng, D.S. Wunschel, C.D. Masselon, L. Pasa-Tolic, R.D. Smith, Retrieval of DNA using softlanding after mass analysis by ESI-FTICR for enzymatic manipulation. J. Am. Chem. Soc. 121, 8961–8962 (1999)CrossRef
149.
go back to reference G. Siuzdak, B. Bothner, M. Yeager, C. Brugidou, C.M. Fauquet, K. Hoey, C.-M. Change, Mass spectrometry and viral analysis. Chem. Biol. 3, 45–48 (1996)CrossRef G. Siuzdak, B. Bothner, M. Yeager, C. Brugidou, C.M. Fauquet, K. Hoey, C.-M. Change, Mass spectrometry and viral analysis. Chem. Biol. 3, 45–48 (1996)CrossRef
150.
go back to reference S.D. Fuerstenau, W.H. Benner, J.J. Thomas, C. Brugidou, B. Bothner, G. Siuzdak, Mass spectrometry of an intact virus. Angew. Chem. 113, 559–562 (2001)CrossRef S.D. Fuerstenau, W.H. Benner, J.J. Thomas, C. Brugidou, B. Bothner, G. Siuzdak, Mass spectrometry of an intact virus. Angew. Chem. 113, 559–562 (2001)CrossRef
151.
go back to reference Y. Tani, S. Kobayashi, H. Kawazoe, Characterization of electrospray ion-beam-deposited CdSe/ZnS quantum dot thin films from a colloidal solution. J. Vac. Sci. Technol. A 26, 1058–1061 (2008)CrossRef Y. Tani, S. Kobayashi, H. Kawazoe, Characterization of electrospray ion-beam-deposited CdSe/ZnS quantum dot thin films from a colloidal solution. J. Vac. Sci. Technol. A 26, 1058–1061 (2008)CrossRef
152.
go back to reference K. Anggara, Y. Zhu, G Fittolani, Y. Yu, T. Tyrikos-Ergas, M Delbianco, S. Rauschenbach, S. Abb, K. Kern, Identifying the origin of local flexibility in a carbohydrate polymer. Proceed. Nat. Acad. Sci. (PNAS) 118, 2102168118 (2021) K. Anggara, Y. Zhu, G Fittolani, Y. Yu, T. Tyrikos-Ergas, M Delbianco, S. Rauschenbach, S. Abb, K. Kern, Identifying the origin of local flexibility in a carbohydrate polymer. Proceed. Nat. Acad. Sci. (PNAS) 118, 2102168118 (2021)
153.
go back to reference X. Wu, M. Delbianco, K. Anggara, T. Michnowicz, A. Pardo-Vargas, P. Bharate, S. Sen, M. Pristl, S. Rauschenbach, U. Schickum, S. Abb, P.H. Seeberger, K. Kern, Imaging single glycans. Nature 582, 375–378 (2020)CrossRef X. Wu, M. Delbianco, K. Anggara, T. Michnowicz, A. Pardo-Vargas, P. Bharate, S. Sen, M. Pristl, S. Rauschenbach, U. Schickum, S. Abb, P.H. Seeberger, K. Kern, Imaging single glycans. Nature 582, 375–378 (2020)CrossRef
154.
go back to reference S. Abb, N. Tarrat, J. Cortés, B. Andriyevsky, L. Harnau, J.C. Schön, S. Rauschenbach, K. Kern, Carbohydrate self-assembly at surfaces: STM imaging of sucrose conformation and ordering on Cu (100). Angew. Chem. 131, 8424–8428 (2019) S. Abb, N. Tarrat, J. Cortés, B. Andriyevsky, L. Harnau, J.C. Schön, S. Rauschenbach, K. Kern, Carbohydrate self-assembly at surfaces: STM imaging of sucrose conformation and ordering on Cu (100). Angew. Chem. 131, 8424–8428 (2019)
155.
go back to reference S. Banerjee, S. Mazumdar, Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Inter. J. Analyt. Chem. 2012, 282574 (2012) S. Banerjee, S. Mazumdar, Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Inter. J. Analyt. Chem. 2012, 282574 (2012)
156.
go back to reference J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989)CrossRef J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989)CrossRef
157.
go back to reference G. Taylor, Disintegration of water drops in an electric field. Proceed. Royal Soc. London, A 280, 383–397 (1964) G. Taylor, Disintegration of water drops in an electric field. Proceed. Royal Soc. London, A 280, 383–397 (1964)
158.
go back to reference P. Kebarle, L. Tang, From ions in solution to ions in the gas phase: the mechanism of electrospray mass spectrometry. Analyt. Chem. 65, 972A-986A (1993) P. Kebarle, L. Tang, From ions in solution to ions in the gas phase: the mechanism of electrospray mass spectrometry. Analyt. Chem. 65, 972A-986A (1993)
159.
go back to reference P. Kebarle, M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analyt. Chim. Acta 406, 11–35 (2000)CrossRef P. Kebarle, M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analyt. Chim. Acta 406, 11–35 (2000)CrossRef
160.
go back to reference L. Konermann, E. Ahadi, A.D. Rodriguez, S. Vahidi, Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013)CrossRef L. Konermann, E. Ahadi, A.D. Rodriguez, S. Vahidi, Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013)CrossRef
161.
go back to reference S. Rauschenbach, Electrospray ion beam deposition and mass spectroscopy of nonvolatile molecules and nanomaterials, Dissertation, École Polytechnique Fédérale de Lausanne (2008) S. Rauschenbach, Electrospray ion beam deposition and mass spectroscopy of nonvolatile molecules and nanomaterials, Dissertation, École Polytechnique Fédérale de Lausanne (2008)
162.
go back to reference O. Hadjar, P. Wang, J.H. Futrell, Y. Dessiaterik, Z. Zhu, J.P. Cowin, M.J. Iedema, J. Laskin, Design and performance of an instrument for soft landing of biomolecular ions on surfaces. Analy. Chem. 79, 6566–6574 (2007)CrossRef O. Hadjar, P. Wang, J.H. Futrell, Y. Dessiaterik, Z. Zhu, J.P. Cowin, M.J. Iedema, J. Laskin, Design and performance of an instrument for soft landing of biomolecular ions on surfaces. Analy. Chem. 79, 6566–6574 (2007)CrossRef
163.
go back to reference K.D.D. Gunaratne, V. Prabhakaran, Y.M. Ibrahim, R.V. Norheim, G.E. Johnson, J. Laskin, Design and performance of high-flux electrospray ionization source for ion soft landing. Analyst 140, 2957–2963 (2015)CrossRef K.D.D. Gunaratne, V. Prabhakaran, Y.M. Ibrahim, R.V. Norheim, G.E. Johnson, J. Laskin, Design and performance of high-flux electrospray ionization source for ion soft landing. Analyst 140, 2957–2963 (2015)CrossRef
164.
go back to reference Y.M. Warneke, M.E. Belov, G.A. Anderson, Design and performance of a dual-polarity instrument for ion soft landing. J. Laskin, Anal. Chem. 91, 5904–5912 (2019) Y.M. Warneke, M.E. Belov, G.A. Anderson, Design and performance of a dual-polarity instrument for ion soft landing. J. Laskin, Anal. Chem. 91, 5904–5912 (2019)
165.
go back to reference G.E. Johnson, D. Gunaratne, J. Laskin, Soft- and reactive landings of ions onto surfaces: concepts and applications. Mass Spectrom. Rev. 35, 439–479 (2016)CrossRef G.E. Johnson, D. Gunaratne, J. Laskin, Soft- and reactive landings of ions onto surfaces: concepts and applications. Mass Spectrom. Rev. 35, 439–479 (2016)CrossRef
166.
go back to reference J. Warneke, M.E. McBriarty, S.L. Riechers, S. China, M.H. Engelhard, E. Aprá, R.P. Young, N.M. Washton, C. Jenne, G.E. Johnson, J. Laskin, Self-organizing layers from complex molecular anions. Nature Comm. 9, 1889 (2018)CrossRef J. Warneke, M.E. McBriarty, S.L. Riechers, S. China, M.H. Engelhard, E. Aprá, R.P. Young, N.M. Washton, C. Jenne, G.E. Johnson, J. Laskin, Self-organizing layers from complex molecular anions. Nature Comm. 9, 1889 (2018)CrossRef
167.
go back to reference H. Usui, I. Yamada, T. Takagi, Anthracene and polyethylene thin-film depositions by ionized cluster beam. J. Vac. Sci. Technol. A 4, 52–60 (1986)CrossRef H. Usui, I. Yamada, T. Takagi, Anthracene and polyethylene thin-film depositions by ionized cluster beam. J. Vac. Sci. Technol. A 4, 52–60 (1986)CrossRef
168.
go back to reference Qi, L., Sinnott, S.B.: Generation of 3D hydrocarbon thin films via organic molecular cluster collisions, Sur. Sci. 398, 195–202 (1998). L. Qi, W.L. Young, S.B. Sinnott, Effect of surface reactivity on the nucleation of hydrocarbon thin films through molecular-cluster beam deposition. Sur Sci. 426, 83–91 (1999) Qi, L., Sinnott, S.B.: Generation of 3D hydrocarbon thin films via organic molecular cluster collisions, Sur. Sci. 398, 195–202 (1998). L. Qi, W.L. Young, S.B. Sinnott, Effect of surface reactivity on the nucleation of hydrocarbon thin films through molecular-cluster beam deposition. Sur Sci. 426, 83–91 (1999)
169.
go back to reference S. Rauschenbach, G. Rinke, N. Malinowski, R.T. Weitz, R. Dinnebier, N. Thontasen, Z. Deng,, T. Lutz,, P.M. de Ameida Rollo, G. Costantini, L. Harnau, K. Kern, Crystalline inverted membranes grown on surfaces by electrospray ion beam deposition in vacuum. Adv. Mater. 24, 2761–2767 (2014) S. Rauschenbach, G. Rinke, N. Malinowski, R.T. Weitz, R. Dinnebier, N. Thontasen, Z. Deng,, T. Lutz,, P.M. de Ameida Rollo, G. Costantini, L. Harnau, K. Kern, Crystalline inverted membranes grown on surfaces by electrospray ion beam deposition in vacuum. Adv. Mater. 24, 2761–2767 (2014)
170.
go back to reference S.-S. Jester, D. Löffler, P. Weis, A. Böttcher, M.M. Kappes, Morphology of Cn thin films (50 ≤ n ≤ 60) on graphite: Inference of energy dissipation during hyperthermal deposition. Surf. Sci. 603, 1863–1872 (2009)CrossRef S.-S. Jester, D. Löffler, P. Weis, A. Böttcher, M.M. Kappes, Morphology of Cn thin films (50 ≤ n ≤ 60) on graphite: Inference of energy dissipation during hyperthermal deposition. Surf. Sci. 603, 1863–1872 (2009)CrossRef
171.
go back to reference A. Böttcher, P. Weis, S.-S. Jester, D. Löffler, A. Bihlmeier, W. Klopper, M.M. Kappes, Solid C58 films. Phys. Chem. Chem. Phys. 7, 2816–2820 (2005)CrossRef A. Böttcher, P. Weis, S.-S. Jester, D. Löffler, A. Bihlmeier, W. Klopper, M.M. Kappes, Solid C58 films. Phys. Chem. Chem. Phys. 7, 2816–2820 (2005)CrossRef
172.
go back to reference H.E. Fransworth, R.E. Schlier, T.H. George, R.M. Burger, Ion bombardment-cleaning of germanium and titanium as determined by low-energy electron diffraction. J. Appl. Phys. 26, 252–253 (1956)CrossRef H.E. Fransworth, R.E. Schlier, T.H. George, R.M. Burger, Ion bombardment-cleaning of germanium and titanium as determined by low-energy electron diffraction. J. Appl. Phys. 26, 252–253 (1956)CrossRef
173.
go back to reference H. Lüth, Solid Surfaces (Springer, Heidelberg, Interfaces and Thin Films, 2010) H. Lüth, Solid Surfaces (Springer, Heidelberg, Interfaces and Thin Films, 2010)
174.
go back to reference H.R. Kaufman, J.M.E. Harper, Ion doses for low-energy ion-assist applications. J. Vac. Sci. Technol. A 22, 221–224 (2004)CrossRef H.R. Kaufman, J.M.E. Harper, Ion doses for low-energy ion-assist applications. J. Vac. Sci. Technol. A 22, 221–224 (2004)CrossRef
175.
go back to reference N. Razek, A. Schindler, B. Rauschenbach, UHV-Direct bonding of semiconductor wafers at room temperature using hydrogen ion beam surfaces cleaning, Proceed. ECS Meeting 2005, paper MA2005-01, 508.N. Razek, K. Otte, T. Chassé, D. Hirsch, A. Schindler, F. Frost, B. Rauschenbach, GaAs surface cleaning by low energy hydrogen ion beam treatment. J. Vac. Sci. Technol. A 20, 1492–1497 (2002) N. Razek, A. Schindler, B. Rauschenbach, UHV-Direct bonding of semiconductor wafers at room temperature using hydrogen ion beam surfaces cleaning, Proceed. ECS Meeting 2005, paper MA2005-01, 508.N. Razek, K. Otte, T. Chassé, D. Hirsch, A. Schindler, F. Frost, B. Rauschenbach, GaAs surface cleaning by low energy hydrogen ion beam treatment. J. Vac. Sci. Technol. A 20, 1492–1497 (2002)
176.
go back to reference U.B. Sharopov, K. Kaur, M.K. Kurbanov, D.S. Saidov, E.T. Juraev, M.M. Sharipov, Controlling the low-temperature ionic purification of a silicon surface by electron spectroscopy. Silicon 14, 4661–4667 (2022). U.B. Sharopov, K. Kaur, M.K. Kurbanov, D.S. Saidov, E.T. Juraev, M.M. Sharipov, Controlling the low-temperature ionic purification of a silicon surface by electron spectroscopy. Silicon 14, 4661–4667 (2022).
177.
go back to reference S. Mohajerzadeh, C.R. Selvakumar, D.E. Brodiet, M.D. Robertson, J.M. Corbett, Study of in-situ surface cleaning for Si and SiGe epitaxy on Si with a novel ion beam vapor/assisted deposition technique. Progr. Surf. Sci. 50, 347–356 (1995)CrossRef S. Mohajerzadeh, C.R. Selvakumar, D.E. Brodiet, M.D. Robertson, J.M. Corbett, Study of in-situ surface cleaning for Si and SiGe epitaxy on Si with a novel ion beam vapor/assisted deposition technique. Progr. Surf. Sci. 50, 347–356 (1995)CrossRef
178.
go back to reference P. Rabinzohn, G. Gautherin, B. Agius, C. Cohen, Cleaning of Si and GaAs crystal surfaces by ion bombardment in the 50–1500 eV range. J. Electrochem. Soc. 131, 905–914 (1984) P. Rabinzohn, G. Gautherin, B. Agius, C. Cohen, Cleaning of Si and GaAs crystal surfaces by ion bombardment in the 50–1500 eV range. J. Electrochem. Soc. 131, 905–914 (1984)
179.
go back to reference l. Bello, W.H. Chang, W.M. Lau, Mechanism of cleaning and etching Si surfaces with low energy chlorine ion bombardment. J. Appl. Phys. 75, 3092–3097 (1994) l. Bello, W.H. Chang, W.M. Lau, Mechanism of cleaning and etching Si surfaces with low energy chlorine ion bombardment. J. Appl. Phys. 75, 3092–3097 (1994)
180.
go back to reference J.H. Comfort, L.M. Garverick, R. Reif, Silicon surface cleaning by low dose argon-ion bombardment for low temperature (750°C) epitaxial silicon deposition. I. Process considerations. J. Appl. Phys. 62, 3388–3397 (1987) J.H. Comfort, L.M. Garverick, R. Reif, Silicon surface cleaning by low dose argon-ion bombardment for low temperature (750°C) epitaxial silicon deposition. I. Process considerations. J. Appl. Phys. 62, 3388–3397 (1987)
181.
go back to reference T. Choudhury, S. Saied, J.L. Sullivan, A.M. Abbot, Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D: Appl. Phys. 22, 1185–1195 (1989)CrossRef T. Choudhury, S. Saied, J.L. Sullivan, A.M. Abbot, Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D: Appl. Phys. 22, 1185–1195 (1989)CrossRef
182.
go back to reference A.G. Mathewson, Ion induced desorption coefficients for titanium alloy, pure aluminum and stainless steel, Report CERN-ISR-VA/76-5 (1976) A.G. Mathewson, Ion induced desorption coefficients for titanium alloy, pure aluminum and stainless steel, Report CERN-ISR-VA/76-5 (1976)
183.
go back to reference M.P. Lozano, Ion-induced desorption yield measurements from copper and aluminum. Vacuum 67, 339–345 (2002)CrossRef M.P. Lozano, Ion-induced desorption yield measurements from copper and aluminum. Vacuum 67, 339–345 (2002)CrossRef
184.
go back to reference N. Hilleret, Influence de la nature des ions incidents sur les taux de desorption par bombardement ionique de molécules adsorbées sur une surface d’acier inoxydable, Report CERN-ISR-VA/78-10 (1978) N. Hilleret, Influence de la nature des ions incidents sur les taux de desorption par bombardement ionique de molécules adsorbées sur une surface d’acier inoxydable, Report CERN-ISR-VA/78-10 (1978)
185.
go back to reference M.-H. Achard, Desorption des gaz induite par des électrons et des ions de l’acier inoxydable, du cuivre OFHC, du titane et de l’aluminium purs, Report CERN-ISR-VA/76-34 (1976) M.-H. Achard, Desorption des gaz induite par des électrons et des ions de l’acier inoxydable, du cuivre OFHC, du titane et de l’aluminium purs, Report CERN-ISR-VA/76-34 (1976)
186.
go back to reference M.-H. Achard, R. Calder, A. Mathewson, The effect of bakeout temperature on the electron and ion induced gas desorption coefficients of some technological materials. Vacuum 29, 53–65 (1979)CrossRef M.-H. Achard, R. Calder, A. Mathewson, The effect of bakeout temperature on the electron and ion induced gas desorption coefficients of some technological materials. Vacuum 29, 53–65 (1979)CrossRef
187.
go back to reference D.G. Armour, P. Bailey, G. Sharples, The use of ion beams in thin film deposition. Vacuum 36, 769–775 (1986)CrossRef D.G. Armour, P. Bailey, G. Sharples, The use of ion beams in thin film deposition. Vacuum 36, 769–775 (1986)CrossRef
188.
go back to reference H.F. Winters, P. Sigmund, Sputtering of chemisorbed gas (nitrogen on tungsten) by low-energy ions. J. Appl. Phys. 45, 4760–4766 (1974)CrossRef H.F. Winters, P. Sigmund, Sputtering of chemisorbed gas (nitrogen on tungsten) by low-energy ions. J. Appl. Phys. 45, 4760–4766 (1974)CrossRef
189.
go back to reference E. Taglauer, Surface cleaning using sputtering. Appl. Phys. A 51, 238–251 (1990)CrossRef E. Taglauer, Surface cleaning using sputtering. Appl. Phys. A 51, 238–251 (1990)CrossRef
190.
go back to reference G. Carter, D.G. Armour, The interaction of low energy ion beams with surfaces. Thin Solid Films 80, 13–29 (1981)CrossRef G. Carter, D.G. Armour, The interaction of low energy ion beams with surfaces. Thin Solid Films 80, 13–29 (1981)CrossRef
191.
go back to reference H. Niehus, W. Heiland, E. Taglauer, Low-energy scattering at surfaces. Suf. Sci. Rep. 17, 213–303 (1993)CrossRef H. Niehus, W. Heiland, E. Taglauer, Low-energy scattering at surfaces. Suf. Sci. Rep. 17, 213–303 (1993)CrossRef
192.
go back to reference H.F. Winters, E. Taglauer, Sputtering of chemisorbed nitrogen from single-crystal planes of tungsten and molybdenum. Phys. Rev. B 35, 2174–2187 (1987)CrossRef H.F. Winters, E. Taglauer, Sputtering of chemisorbed nitrogen from single-crystal planes of tungsten and molybdenum. Phys. Rev. B 35, 2174–2187 (1987)CrossRef
193.
go back to reference Morita, K., Mori, H., Horino, Y.: Partial cross-section for sputtering of monolayer impurity atoms on metal surfaces. Nucl. Instr. Meth. B 1, 407–410 8 (1986) Morita, K., Mori, H., Horino, Y.: Partial cross-section for sputtering of monolayer impurity atoms on metal surfaces. Nucl. Instr. Meth. B 1, 407410 8 (1986)
194.
go back to reference M. Inoue, S. Tanaka, J. Yukava, K. Morita, Ion impact desorption of metal atoms from Si(111)-√3 x√3 -metal surfaces. Nucl. Instr. Meth. B 58, 411–416 (1991)CrossRef M. Inoue, S. Tanaka, J. Yukava, K. Morita, Ion impact desorption of metal atoms from Si(111)-√3 x√3 -metal surfaces. Nucl. Instr. Meth. B 58, 411–416 (1991)CrossRef
195.
go back to reference E. Taglauer, W. Heiland, R.J. MacDonald, The study of sputtered effects in oxides and metal-adsorbed-gas systems using combined analytical techniques. Surf. Sci. 90, 661–675 (1979)CrossRef E. Taglauer, W. Heiland, R.J. MacDonald, The study of sputtered effects in oxides and metal-adsorbed-gas systems using combined analytical techniques. Surf. Sci. 90, 661–675 (1979)CrossRef
196.
go back to reference A. Benninghoven, Die Analyse monomolekularer Festkörperoberflächenschichten mit Hilfe der Sekundärionenemission. Z. Physik 230, 403–417 (1970)CrossRef A. Benninghoven, Die Analyse monomolekularer Festkörperoberflächenschichten mit Hilfe der Sekundärionenemission. Z. Physik 230, 403–417 (1970)CrossRef
197.
go back to reference Taglauer, E.: Desorption, in data compendium for plasma-surface interactions. In: Langley, R.A., Bohdansky, J., Eckstein, W., Mioduszewski, P., Roth, J., Taglauer, E., Thomas, E.W., Verbeek, H., Wilson, K.L., (eds.) Nucl. Fusion 24, 43–54 (1984) Taglauer, E.: Desorption, in data compendium for plasma-surface interactions. In: Langley, R.A., Bohdansky, J., Eckstein, W., Mioduszewski, P., Roth, J., Taglauer, E., Thomas, E.W., Verbeek, H., Wilson, K.L., (eds.) Nucl. Fusion 24, 43–54 (1984)
198.
go back to reference T. Sikola, L. Dittrichova, J. Spousta, J. Zlamal, J. Stefka, Cleaning of metal surfaces by a broad beam ion source. Nucl. Instr. Meth. Phys. Res. B 127(128), 865–868 (1997)CrossRef T. Sikola, L. Dittrichova, J. Spousta, J. Zlamal, J. Stefka, Cleaning of metal surfaces by a broad beam ion source. Nucl. Instr. Meth. Phys. Res. B 127(128), 865–868 (1997)CrossRef
Metadata
Title
Ion Beam Deposition and Cleaning
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_9

Premium Partners