Skip to main content
Top

2022 | OriginalPaper | Chapter

4. Ion Beam-Induced Damages

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bombardment of surfaces with accelerated ions leads to the formation of defects, where lattice atoms can be displaced after collision with the incident ion or a higher order recoil atom if the transferred energy is higher than the displacement threshold energy. The Kinchin-Pease model, modified Kinchin-Pease model, and the Norgett–Robinson–Torrens model are presented and the calculation of the defect generation rate is demonstrated. Of particular importance is the determination of the number of displacements per atom (dpa), since this number is the benchmark for quantifying radiation-induced changes of material properties after ion bombardment. Assuming that elastic collisions are dominant, the spatial distribution of the deposited energy is discussed. If the assumption of subsequent binary collisions is not valid, the formation of high energy density cascades can be expected. Both the displacement spike and the thermal spike are introduced and the mean features of these cascades are discussed. Then, the behaviour of irradiation-induced point defects as a function of irradiation time (fluence) and the temperature during ion bombardment is described and the main analytical relationships are given. As the concentration of ion beam-induced defects increases, the probability of formation of an amorphous layer also increases. The formation of an amorphous phase for a given material depends on the ion species, ion energy, fluence, ion current density, and irradiation temperature. The various models proposed in the literature for the ion beam-induced amorphization process are briefly summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1969) M.W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1969)
2.
go back to reference K.B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, vol. 2 (Plenum Press, New York, 1975)CrossRef K.B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, vol. 2 (Plenum Press, New York, 1975)CrossRef
3.
go back to reference J.A. Davies, Collision cascades and spike effects, in Surface Modification and Alloying by Laser, Ion, and Electron Beams, ed. by J.M. Poate, G. Foti, D.C. Jacobson (Plenum Press, New York, 1983), pp. 189–219CrossRef J.A. Davies, Collision cascades and spike effects, in Surface Modification and Alloying by Laser, Ion, and Electron Beams, ed. by J.M. Poate, G. Foti, D.C. Jacobson (Plenum Press, New York, 1983), pp. 189–219CrossRef
4.
go back to reference M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions (Cambridge University Press, Cambridge, 1996) M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions (Cambridge University Press, Cambridge, 1996)
5.
go back to reference R.S. Averback, T.D. de la Rubia, Displacement damage in irradiated metals and semiconductors, in Solid State Physics, vol. 51, ed. by H. Ehrenfest, F. Spaepen (Academic Press, New York, 1998), pp. 281–402 R.S. Averback, T.D. de la Rubia, Displacement damage in irradiated metals and semiconductors, in Solid State Physics, vol. 51, ed. by H. Ehrenfest, F. Spaepen (Academic Press, New York, 1998), pp. 281–402
6.
go back to reference G.S. Was, Fundamentals of Radiation Materials Science (Springer, New York, 2007) G.S. Was, Fundamentals of Radiation Materials Science (Springer, New York, 2007)
7.
go back to reference R.E. Stoller, Primary radiation damage formation, in Comprehensive Nuclear Materials, vol. 1, ed. by R.J.M. Konings (Elsevier, Amsterdam 2012), pp. 293–332 R.E. Stoller, Primary radiation damage formation, in Comprehensive Nuclear Materials, vol. 1, ed. by R.J.M. Konings (Elsevier, Amsterdam 2012), pp. 293–332
8.
go back to reference D.R. Olander, A.T. Motta, in Light Water Reactor Material, Volume I: Fundamentals (American Nuclear Society, LaGrange Park, 2017) D.R. Olander, A.T. Motta, in Light Water Reactor Material, Volume I: Fundamentals (American Nuclear Society, LaGrange Park, 2017)
9.
go back to reference A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmidt, U. von Toussaint, G. Badelow, SD TrimSP Version 6.00 (IPP Report 2019-02, Munich 2019) A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmidt, U. von Toussaint, G. Badelow, SD TrimSP Version 6.00 (IPP Report 2019-02, Munich 2019)
10.
go back to reference H.H. Andersen, The depth resolution of sputter profiling. Appl. Phys. 18, 131–140 (1979)CrossRef H.H. Andersen, The depth resolution of sputter profiling. Appl. Phys. 18, 131–140 (1979)CrossRef
11.
go back to reference W.E. King, K.L. Merkle, M. Meshii, Threshold energy surface and Frenkel pair resistivity for Cu. J. Nucl. Mater 117, 12–25 (1983)CrossRef W.E. King, K.L. Merkle, M. Meshii, Threshold energy surface and Frenkel pair resistivity for Cu. J. Nucl. Mater 117, 12–25 (1983)CrossRef
12.
go back to reference T.E. Mitchell et al., in Fundamental Aspects of Radiation Damage in Metals, vol. 1, ed. by M.T. Robinson, F.W. Young (US GPO, Washington, DC, 1976), p. 73 T.E. Mitchell et al., in Fundamental Aspects of Radiation Damage in Metals, vol. 1, ed. by M.T. Robinson, F.W. Young (US GPO, Washington, DC, 1976), p. 73
13.
go back to reference P. Olsson, S.C. Bequart, C. Domain, Ab initio threshold displacement energies in iron. Mat. Res. Lett. 4, 219–225 (2016)CrossRef P. Olsson, S.C. Bequart, C. Domain, Ab initio threshold displacement energies in iron. Mat. Res. Lett. 4, 219–225 (2016)CrossRef
14.
go back to reference D.R. Olander, in Fundamental Aspects of Nuclear Reactor Fuel Elements (National Technical Information Service, Springfield, 1976), pp. 373–417 (Chapter 17) D.R. Olander, in Fundamental Aspects of Nuclear Reactor Fuel Elements (National Technical Information Service, Springfield, 1976), pp. 373–417 (Chapter 17)
15.
go back to reference G.H. Kinchin, R.S. Pease, The displacement of atoms in solids. Rep. Progr. Phys. 18, 1–51 (1955)CrossRef G.H. Kinchin, R.S. Pease, The displacement of atoms in solids. Rep. Progr. Phys. 18, 1–51 (1955)CrossRef
16.
go back to reference M.T. Robinson, On energy dependence of neutron radiation damage in solids, in Nuclear Fusion Reactors (British Nuclear Energy Society, London, 1970), pp. 346–378 M.T. Robinson, On energy dependence of neutron radiation damage in solids, in Nuclear Fusion Reactors (British Nuclear Energy Society, London, 1970), pp. 346–378
17.
go back to reference J. Lindhard, V. Nielsen, M. Scharff, P.V. Thomsen, Integral equation governing radiation effects—notes on atomic collision III. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 33(10) (1963) J. Lindhard, V. Nielsen, M. Scharff, P.V. Thomsen, Integral equation governing radiation effects—notes on atomic collision III. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 33(10) (1963)
18.
go back to reference M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method for calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975)CrossRef M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method for calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975)CrossRef
19.
go back to reference M.T. Robinson, The influence of the scattering low on the radiation damage displacement cascade. Phil. Mag. 12, 741–765 (1965)CrossRef M.T. Robinson, The influence of the scattering low on the radiation damage displacement cascade. Phil. Mag. 12, 741–765 (1965)CrossRef
20.
go back to reference M.T. Robinson, I.M. Torrens, Computer simulation of atomic-displacement cascades in solids in binary collision approximation. Phys. Rev. B 9, 5008–5024 (1974)CrossRef M.T. Robinson, I.M. Torrens, Computer simulation of atomic-displacement cascades in solids in binary collision approximation. Phys. Rev. B 9, 5008–5024 (1974)CrossRef
21.
go back to reference P. Sigmund, A note on integral equations of Kinchin-Pease type. Rad. Eff. 1, 15–18 (1969)CrossRef P. Sigmund, A note on integral equations of Kinchin-Pease type. Rad. Eff. 1, 15–18 (1969)CrossRef
22.
go back to reference P. Sigmund, On the number of atoms displaced by implanted ions or energetic recoil atoms. Appl. Phys. Lett. 14, 114–116 (1969)CrossRef P. Sigmund, On the number of atoms displaced by implanted ions or energetic recoil atoms. Appl. Phys. Lett. 14, 114–116 (1969)CrossRef
23.
go back to reference R.S. Averback, R. Benedek, K.L. Merkle, Ion-irradiation studies of the damage function of copper and silver. Phys. Rev. B 18, 4156–4171 (1978). Efficiency of defect production in cascades. J. Nucl. Mater. 69 & 70, 786–789 (1978) R.S. Averback, R. Benedek, K.L. Merkle, Ion-irradiation studies of the damage function of copper and silver. Phys. Rev. B 18, 41564171 (1978). Efficiency of defect production in cascades. J. Nucl. Mater. 69 & 70, 786–789 (1978)
24.
go back to reference S.J. Zinkle, B.N. Singh, Analysis of displacement damage and defect production under cascade damage conditions. J. Nucl. Mater. 199, 173–191 (1993) S.J. Zinkle, B.N. Singh, Analysis of displacement damage and defect production under cascade damage conditions. J. Nucl. Mater. 199, 173–191 (1993)
25.
go back to reference S.J. Kim, M.A. Nicolet, R.S. Averback, D. Peak, Low-temperature ion beam mixing in metal. Phys. Rev. B 3, 38–49 (1988) S.J. Kim, M.A. Nicolet, R.S. Averback, D. Peak, Low-temperature ion beam mixing in metal. Phys. Rev. B 3, 38–49 (1988)
26.
go back to reference K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary radiation damage in materials—review of current understanding and proposed new standard displacement damage model to incorporate in cascade defect production efficiency and mixing effects. Report NEA/NSC/DOC (2015) 9 (Nuclear Energy Agency, OECD 2015) K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary radiation damage in materials—review of current understanding and proposed new standard displacement damage model to incorporate in cascade defect production efficiency and mixing effects. Report NEA/NSC/DOC (2015) 9 (Nuclear Energy Agency, OECD 2015)
27.
go back to reference K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Comm. 9, 1084 (2018)CrossRef K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Comm. 9, 1084 (2018)CrossRef
28.
go back to reference Y. Konobeyev, U. Fischer, Y.A. Korovin, S.P. Simakov, Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections, Nucl. Energy Technol. 3, 169–175 (2017) Y. Konobeyev, U. Fischer, Y.A. Korovin, S.P. Simakov, Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections, Nucl. Energy Technol. 3, 169–175 (2017)
29.
go back to reference K.B. Winterbon, P. Sigmund, J.B. Sanders, Spatial distribution of energy deposited by atomic particles in elastic collisions. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 37(14) (1970) K.B. Winterbon, P. Sigmund, J.B. Sanders, Spatial distribution of energy deposited by atomic particles in elastic collisions. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 37(14) (1970)
30.
go back to reference D.K. Brice, Spatial distribution of energy deposited into atomic processes in ion-implanted silicon. Rad. Eff. 6, 77–87 (1970)CrossRef D.K. Brice, Spatial distribution of energy deposited into atomic processes in ion-implanted silicon. Rad. Eff. 6, 77–87 (1970)CrossRef
31.
go back to reference K.B. Winterbon, Heavy-ion range profiles and associated damage distributions. Rad. Eff. 13, 215–226 (1972)CrossRef K.B. Winterbon, Heavy-ion range profiles and associated damage distributions. Rad. Eff. 13, 215–226 (1972)CrossRef
32.
go back to reference J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields—notes on atomic collision I. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 36(10) (1968) J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields—notes on atomic collision I. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 36(10) (1968)
33.
go back to reference P. Sigmund, G.P. Scheidler, G. Roth, Spatial distribution of defects in cascades. Report BNL 50083, C-52 (1968), p. 375 P. Sigmund, G.P. Scheidler, G. Roth, Spatial distribution of defects in cascades. Report BNL 50083, C-52 (1968), p. 375
34.
go back to reference P. Sigmund, Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids. Appl. Phys. Lett. 25, 169–171 (1974). Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969) P. Sigmund, Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids. Appl. Phys. Lett. 25, 169171 (1974). Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969)
35.
go back to reference R.M. Bradley, Exact linear dispersion relation for the Sigmund model of ion sputtering. Phys. Rev. B 84, 075413 (2011) R.M. Bradley, Exact linear dispersion relation for the Sigmund model of ion sputtering. Phys. Rev. B 84, 075413 (2011)
36.
go back to reference M.Z. Hossain, J.B. Freund, H.T. Johnson, Ion impact energy distribution and sputtering of Si and Ge. J. Appl. Phys. 111, 103513 (2012) M.Z. Hossain, J.B. Freund, H.T. Johnson, Ion impact energy distribution and sputtering of Si and Ge. J. Appl. Phys. 111, 103513 (2012)
37.
go back to reference G. Hobler, R.M. Bradley, H.M. Urbassek, Probing the limitations of Sigmund’s model of spatially resolved sputtering using Monte Carlo simulations. Phys. Rev. B 93, 205443 (2016) G. Hobler, R.M. Bradley, H.M. Urbassek, Probing the limitations of Sigmund’s model of spatially resolved sputtering using Monte Carlo simulations. Phys. Rev. B 93, 205443 (2016)
38.
go back to reference M. Feix, A.K. Hartmann, R. Kree, J. Moñoz-Garcia, R. Cuerno, Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces. Phys. Rev. B 71, 125407 (2005) M. Feix, A.K. Hartmann, R. Kree, J. Moñoz-Garcia, R. Cuerno, Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces. Phys. Rev. B 71, 125407 (2005)
39.
go back to reference W. Bolse, Ion-beam-induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides. Mater. Sci. Eng. R. Rep. 12, 53–121 (1994)CrossRef W. Bolse, Ion-beam-induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides. Mater. Sci. Eng. R. Rep. 12, 53–121 (1994)CrossRef
40.
go back to reference R.S. Averback, Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49–62 (1994)CrossRef R.S. Averback, Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49–62 (1994)CrossRef
41.
go back to reference F. Seitz, S. Koehler, Displacement of atoms during irradiation, in Solid State Physics, vol. 2, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), pp. 307–442 F. Seitz, S. Koehler, Displacement of atoms during irradiation, in Solid State Physics, vol. 2, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), pp. 307–442
42.
go back to reference J.A. Brinkman, On nature of radiation damage in metals. J. Appl. Phys. 25, 961–970 (1954)CrossRef J.A. Brinkman, On nature of radiation damage in metals. J. Appl. Phys. 25, 961–970 (1954)CrossRef
43.
go back to reference A Seeger, On the theory of radiation damage and radiation hardening, in Proceedings of the Second UN International Conference on the Peaceful Uses of Atomic Energy, vol. 8 (Geneva 1958), p. 250 A Seeger, On the theory of radiation damage and radiation hardening, in Proceedings of the Second UN International Conference on the Peaceful Uses of Atomic Energy, vol. 8 (Geneva 1958), p. 250
44.
go back to reference M. Nastasi, J.W. Mayer, Ion beam mixing in metallic and semiconductor materials. Mater. Sci. Eng. R 12, 1–52 (1994)CrossRef M. Nastasi, J.W. Mayer, Ion beam mixing in metallic and semiconductor materials. Mater. Sci. Eng. R 12, 1–52 (1994)CrossRef
45.
go back to reference G.H. Vineyard, Thermal spikes and activated processes. Rad. Eff. Def. Solids 29, 245–248 (1976) G.H. Vineyard, Thermal spikes and activated processes. Rad. Eff. Def. Solids 29, 245–248 (1976)
46.
go back to reference H. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamond like thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef H. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamond like thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef
47.
go back to reference H.M. Naguib, R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids. Rad. Effects 25, 1–12 (1975)CrossRef H.M. Naguib, R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids. Rad. Effects 25, 1–12 (1975)CrossRef
48.
go back to reference L.T. Chadderton, On the anatomy of a fission fragment track. Int. J. Rad. Appl. Instrum. Part D, Nucl. Tracks Rad. Measur. 15, 11–29 (1988) L.T. Chadderton, On the anatomy of a fission fragment track. Int. J. Rad. Appl. Instrum. Part D, Nucl. Tracks Rad. Measur. 15, 11–29 (1988)
49.
go back to reference I.M. Lifshitz, M.I. Kaganov, L.V. Tanatarov, On the theory of radiation-induced changes in metals. J. Nucl. Energy A 12, 69–78 (1960) I.M. Lifshitz, M.I. Kaganov, L.V. Tanatarov, On the theory of radiation-induced changes in metals. J. Nucl. Energy A 12, 69–78 (1960)
50.
go back to reference Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys. Condens. Matter 6, 6733–6750 (1995) Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys. Condens. Matter 6, 6733–6750 (1995)
51.
go back to reference R. Sizmann, Effect of radiation upon diffusion in metals. J. Nucl. Mater. 69–70, 386–412 (1978)CrossRef R. Sizmann, Effect of radiation upon diffusion in metals. J. Nucl. Mater. 69–70, 386–412 (1978)CrossRef
52.
go back to reference W.M. Lomer, Diffusion Coefficients in Copper Under Fast Neutron Irradiation (UKAEA Report AERE-T, 1954) W.M. Lomer, Diffusion Coefficients in Copper Under Fast Neutron Irradiation (UKAEA Report AERE-T, 1954)
53.
go back to reference D. Brailsford, R. Bullough, The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 44, 121–135 (1972)CrossRef D. Brailsford, R. Bullough, The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 44, 121–135 (1972)CrossRef
54.
go back to reference K.C. Russel, Phase stability under irradiation. Progr. Mater Sci. 28, 229–434 (1984)CrossRef K.C. Russel, Phase stability under irradiation. Progr. Mater Sci. 28, 229–434 (1984)CrossRef
55.
go back to reference B. Rauschenbach, V. Heera, Amorphisation of metals by ion implantation and ion beam mixing. Defect Diffus. Forum 57–58, 143–188 (1988)CrossRef B. Rauschenbach, V. Heera, Amorphisation of metals by ion implantation and ion beam mixing. Defect Diffus. Forum 57–58, 143–188 (1988)CrossRef
56.
go back to reference B. Rauschenbach, G. Otto, K. Hohmuth, V. Herra, Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation. J. Phys. F Met. Phys. 17, 2207–2216 (1987)CrossRef B. Rauschenbach, G. Otto, K. Hohmuth, V. Herra, Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation. J. Phys. F Met. Phys. 17, 2207–2216 (1987)CrossRef
57.
go back to reference B. Pfeifer, J.K.N. Lindner, B. Rauschenbach, B. Stritzker, 2 MeV aluminum implantation into silicolr: radiation damage. Nucl. Instr. Meth. Phys. Res. B 96, 150–154 (1995)CrossRef B. Pfeifer, J.K.N. Lindner, B. Rauschenbach, B. Stritzker, 2 MeV aluminum implantation into silicolr: radiation damage. Nucl. Instr. Meth. Phys. Res. B 96, 150–154 (1995)CrossRef
58.
go back to reference E. Wendler, Mechanisms of damage formation in semiconductors. Nucl. Instr. Meth. Phys. Res. B 267, 2680–2689 (2009)CrossRef E. Wendler, Mechanisms of damage formation in semiconductors. Nucl. Instr. Meth. Phys. Res. B 267, 2680–2689 (2009)CrossRef
59.
go back to reference J. Jagielski, L. Thomé, Multi-step damage accumulation in irradiated crystal. Appl. Phys. A 97, 147–155 (2009)CrossRef J. Jagielski, L. Thomé, Multi-step damage accumulation in irradiated crystal. Appl. Phys. A 97, 147–155 (2009)CrossRef
60.
go back to reference J.F. Gibbons, Ion implantation in semiconductors—part II: damage production and annealing. Proc. IEEE 60, 1062–1096 (1972)CrossRef J.F. Gibbons, Ion implantation in semiconductors—part II: damage production and annealing. Proc. IEEE 60, 1062–1096 (1972)CrossRef
61.
go back to reference N. Hecking, K.F. Heidemann, E. te Kaat, Model of temperature dependent defect interaction and amorphization in crystalline silicon during irradiation. Nucl. Instr. Meth. Phys. Res. B 15, 760–764 (1986)CrossRef N. Hecking, K.F. Heidemann, E. te Kaat, Model of temperature dependent defect interaction and amorphization in crystalline silicon during irradiation. Nucl. Instr. Meth. Phys. Res. B 15, 760–764 (1986)CrossRef
62.
go back to reference W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkl, Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434–1484 (1998) W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkl, Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434–1484 (1998)
63.
go back to reference H. Trinkaus, Ion beam-induced amorphization of crystalline solids: mechanism and modeling. Mater. Sci. Forum 248(249), 3–12 (1997)CrossRef H. Trinkaus, Ion beam-induced amorphization of crystalline solids: mechanism and modeling. Mater. Sci. Forum 248(249), 3–12 (1997)CrossRef
64.
go back to reference S. Voronel, A. Rabinovich, V. Kisliuk, T. Steinberg, Sverbilova, Universality of physical properties of disorderd alloys. Phys. Rev. Lett. 23, 2402–2405 (1988)CrossRef S. Voronel, A. Rabinovich, V. Kisliuk, T. Steinberg, Sverbilova, Universality of physical properties of disorderd alloys. Phys. Rev. Lett. 23, 2402–2405 (1988)CrossRef
65.
go back to reference N.Q. Lam, P.R. Okamoto, M. Li, Disorder-induced amorphization. J. Nucl. Mater. 251, 89–97 (1997)CrossRef N.Q. Lam, P.R. Okamoto, M. Li, Disorder-induced amorphization. J. Nucl. Mater. 251, 89–97 (1997)CrossRef
66.
go back to reference P.R. Okamoto, N.Q. Lam, L.E. Rehn, Physics of crystal-to-glass transformation. Solid State Phys. 52, 1–135 (1999)CrossRef P.R. Okamoto, N.Q. Lam, L.E. Rehn, Physics of crystal-to-glass transformation. Solid State Phys. 52, 1–135 (1999)CrossRef
67.
go back to reference F.A. Lindemann, Über die Berechnung der molekularen Eigenfrequenzen. Phys. Z. 14, 609–612 (1910) F.A. Lindemann, Über die Berechnung der molekularen Eigenfrequenzen. Phys. Z. 14, 609–612 (1910)
68.
go back to reference G. Linker, Amorphization of Niobium films by boron ion implantation. Mater. Sci. Eng. 69, 105–110 (1985)CrossRef G. Linker, Amorphization of Niobium films by boron ion implantation. Mater. Sci. Eng. 69, 105–110 (1985)CrossRef
69.
go back to reference G. Linker, X-ray study of the defect structure in ion implanted niobium and molybdenum superconductors. Nucl. Instr. Meth. 182–183, 501–508 (1981)CrossRef G. Linker, X-ray study of the defect structure in ion implanted niobium and molybdenum superconductors. Nucl. Instr. Meth. 182–183, 501–508 (1981)CrossRef
70.
go back to reference J.R. Dennis, E.B. Hale, Crystalline to amorphous transformation in ion-implanted silicon: a composite model. J. Appl. Phys. 49, 1119–1127 (1978)CrossRef J.R. Dennis, E.B. Hale, Crystalline to amorphous transformation in ion-implanted silicon: a composite model. J. Appl. Phys. 49, 1119–1127 (1978)CrossRef
71.
go back to reference S.T. Picraux, F.L. Vook, Ionization, thermal, and flux dependences of implantation disorder in silicon. Rad. Eff. 11, 179–192 (1971). S.T. Picraux, W. Weisenberger, F.L. Vook, Low temperature channeling measurements of ion implantation lattice disorder in single crystal silicon. Rad. Eff. 7, 101–107 (1971) S.T. Picraux, F.L. Vook, Ionization, thermal, and flux dependences of implantation disorder in silicon. Rad. Eff. 11, 179–192 (1971). S.T. Picraux, W. Weisenberger, F.L. Vook, Low temperature channeling measurements of ion implantation lattice disorder in single crystal silicon. Rad. Eff. 7, 101–107 (1971)
72.
go back to reference S. Prussin, D.I. Margolese, R.N. Tauber, Formation of amorphous layers by ion implantation. J. Appl. Phys. 57, 180–185 (1985)CrossRef S. Prussin, D.I. Margolese, R.N. Tauber, Formation of amorphous layers by ion implantation. J. Appl. Phys. 57, 180–185 (1985)CrossRef
73.
go back to reference F.F. Morehead, B.L. Crowder, A model for the formation of amorphous Si by ion bombardment. Rad. Eff. 6, 27–32 (1970)CrossRef F.F. Morehead, B.L. Crowder, A model for the formation of amorphous Si by ion bombardment. Rad. Eff. 6, 27–32 (1970)CrossRef
74.
go back to reference F.F. Morehead, Jr. B.L. Crowder, A model for the formation of amorphous Si by ion bombardment, in Ion Implantation, ed. by F.H. Eisen, L.T. Chadderton (Gordon and Breach Science Publishers, London, 1971), pp. 25–30 F.F. Morehead, Jr. B.L. Crowder, A model for the formation of amorphous Si by ion bombardment, in Ion Implantation, ed. by F.H. Eisen, L.T. Chadderton (Gordon and Breach Science Publishers, London, 1971), pp. 25–30
75.
go back to reference E. Wendler, W. Wesch, III–V semiconductors under ion bombardment—studied by RBS in situ at 15 K, in Advances in Solid State Physics, vol. 44 ed. by B. Kramer (Springer, Berlin, Heidelberg, 2004), pp. 339–350 E. Wendler, W. Wesch, III–V semiconductors under ion bombardment—studied by RBS in situ at 15 K, in Advances in Solid State Physics, vol. 44 ed. by B. Kramer (Springer, Berlin, Heidelberg, 2004), pp. 339–350
76.
go back to reference L. Pelaz, L.A. Marqués, J. Barbolla, Ion-beam-induced amorphization and recrystallization in silicon. J. Appl. Phys. 96, 5947–5976 (2004)CrossRef L. Pelaz, L.A. Marqués, J. Barbolla, Ion-beam-induced amorphization and recrystallization in silicon. J. Appl. Phys. 96, 5947–5976 (2004)CrossRef
77.
go back to reference W.J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics, Nucl. Instr. Meth. Phys. Res. B 166–167, 98–106 (2000) W.J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics, Nucl. Instr. Meth. Phys. Res. B 166–167, 98–106 (2000)
Metadata
Title
Ion Beam-Induced Damages
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_4

Premium Partners