Skip to main content
Top

2022 | OriginalPaper | Chapter

11. Ion Beam Sputtering Induced Glancing Angle Deposition

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The method of ion beam sputtering under glancing angle conditions in combination with an additional rotation of the sample holder allows the growth of almost arbitrarily designed nano- and microstructures of all material classes on surfaces. The self-shadowing and the surface diffusion essentially govern the structure evolution. It is demonstrated that by varying the particle incidence angle, the temperature, azimuthal rotation frequency, and the beam divergence of the sputtered particles, a wide variety of nanostructure morphologies (e.g., slanted and vertical columns, screws, spirals, or zigzag columns) can be generated. Ballistic simulations are preferably used to simulate the growth of these structures. It can be shown that two basic alternatives of ballistic simulations, off-lattice simulations and on-lattice simulations, are available to successfully model growth. A remarkable result of all experimental investigations and computer simulations is that the column tilt angle is always smaller than the incidence angle. Various explanations are known to explain this fact. These models will be presented and it will be shown that especially the competition model is able to describe a relation between the tilt angle and the angle of incidence for the complete range of material incidence angles. For various applications, patterning of the substrate prior to growth is required to fabricate arrays for highly regular nanostructures. This fabrication is demonstrated and the application of these structures for the realization of biosensors and magnetic nanotubes is shown.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. van Kranenburg, C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. R 11, 295–354 (1994)CrossRef H. van Kranenburg, C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. R 11, 295–354 (1994)CrossRef
2.
go back to reference A. Lakhtakia, R. Messier, Sculptured thin films: nanoengineered morphology and optics (SPIE Press, Bellingham, 2005)CrossRef A. Lakhtakia, R. Messier, Sculptured thin films: nanoengineered morphology and optics (SPIE Press, Bellingham, 2005)CrossRef
3.
go back to reference T. Karabacak, T.-M. Lu, Shadowing growth and physical self-assembly of 3D columnar structures, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, 2005), Chap. 69, p. 729 T. Karabacak, T.-M. Lu, Shadowing growth and physical self-assembly of 3D columnar structures, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, 2005), Chap. 69, p. 729
4.
go back to reference M.M. Hawkeye, M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007)CrossRef M.M. Hawkeye, M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007)CrossRef
5.
go back to reference M.T. Taschuk, M.M. Hawkeye, M.J. Brett, Glancing angle deposition, in Handbook of deposition technologies for films and coatings, ed. by P.M. Martin, (Elsevier, 2010), pp. 621–678 M.T. Taschuk, M.M. Hawkeye, M.J. Brett, Glancing angle deposition, in Handbook of deposition technologies for films and coatings, ed. by P.M. Martin, (Elsevier, 2010), pp. 621–678
6.
go back to reference M.M. Hawkeye, M.T. Taschuk, M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale (Wiley, New York, 2014) M.M. Hawkeye, M.T. Taschuk, M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale (Wiley, New York, 2014)
7.
go back to reference A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progr. Mater. Sci. 76, 59–153 (2016)CrossRef A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progr. Mater. Sci. 76, 59–153 (2016)CrossRef
8.
go back to reference C. Grüner, I. Abdulhalim, B. Rauschenbach, Glancing angle deposition for biosensing applications, in Encyclopedia of Interfacial Chemistry, ed. by K. Wandelt (Elsevier, Oxford, 2018), pp. 129–137 C. Grüner, I. Abdulhalim, B. Rauschenbach, Glancing angle deposition for biosensing applications, in Encyclopedia of Interfacial Chemistry, ed. by K. Wandelt (Elsevier, Oxford, 2018), pp. 129–137
9.
go back to reference B.A. Movchan, A.V. Demchishin, Study of structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide in vacuum. Fiz. Metal. Metalloved. 28, 653–660 (1969) B.A. Movchan, A.V. Demchishin, Study of structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide in vacuum. Fiz. Metal. Metalloved. 28, 653–660 (1969)
10.
go back to reference A. Kundt, Ueber Doppelbrechung des Lichtes in Metallschichten, welche durch Zerstäuben einer Kathode hergestellt sind. Ann. Phys. Chem. 263, 59–71 (1886)CrossRef A. Kundt, Ueber Doppelbrechung des Lichtes in Metallschichten, welche durch Zerstäuben einer Kathode hergestellt sind. Ann. Phys. Chem. 263, 59–71 (1886)CrossRef
11.
go back to reference H. König, G. Helwig, Über die Struktur schräg aufgedampfter Schichten und ihr Einfluss auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten. Optik 6, 111–124 (1950) H. König, G. Helwig, Über die Struktur schräg aufgedampfter Schichten und ihr Einfluss auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten. Optik 6, 111–124 (1950)
12.
go back to reference J.M. Nieuwenhuizen, H.B. Haanstra, Microfractography of thin films. Philips Tech. Rev. 27, 87–91 (1966) J.M. Nieuwenhuizen, H.B. Haanstra, Microfractography of thin films. Philips Tech. Rev. 27, 87–91 (1966)
13.
go back to reference N.O. Young, J. Kowal, Optically active fluorite films. Nature 183, 104–105 (1959)CrossRef N.O. Young, J. Kowal, Optically active fluorite films. Nature 183, 104–105 (1959)CrossRef
14.
go back to reference K. Robbie, M.J. Brett, A. Lakhtakia, First thin-film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. 13, 2991–2993 (1995)CrossRef K. Robbie, M.J. Brett, A. Lakhtakia, First thin-film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. 13, 2991–2993 (1995)CrossRef
15.
go back to reference K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. 13, 1032–1035 (1995)CrossRef K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. 13, 1032–1035 (1995)CrossRef
16.
go back to reference K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616–616 (1996)CrossRef K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616–616 (1996)CrossRef
17.
go back to reference C. Patzig, A. Miessler, T. Karabacak, B. Rauschenbach, Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition. Phys. Stat. Sol. B 247, 1310–1321 (2010)CrossRef C. Patzig, A. Miessler, T. Karabacak, B. Rauschenbach, Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition. Phys. Stat. Sol. B 247, 1310–1321 (2010)CrossRef
18.
go back to reference C. Patzig, B. Rauschenbach, Temperature effect on the glancing angle deposition of Si sculptured thin films. J. Vac. Sci. Technol. A 26, 881–886 (2008)CrossRef C. Patzig, B. Rauschenbach, Temperature effect on the glancing angle deposition of Si sculptured thin films. J. Vac. Sci. Technol. A 26, 881–886 (2008)CrossRef
19.
go back to reference B. Rauschenbach, C. Patzig, Periodic nanoscale Si structures by ion beam induced glancing angle deposition, in Proceedings of IEEE 2nd International Nanoelectronic Conference, Shanghai (2008), pp. 1084–1088 B. Rauschenbach, C. Patzig, Periodic nanoscale Si structures by ion beam induced glancing angle deposition, in Proceedings of IEEE 2nd International Nanoelectronic Conference, Shanghai (2008), pp. 1084–1088
20.
go back to reference C. Patzig, B. Rauschenbach, W. Erfurth, A. Milenin, Ordered silicon nanostructures by ion beam induced glancing angle deposition. J. Vac. Sci. Technol. B 25, 833–838 (2007)CrossRef C. Patzig, B. Rauschenbach, W. Erfurth, A. Milenin, Ordered silicon nanostructures by ion beam induced glancing angle deposition. J. Vac. Sci. Technol. B 25, 833–838 (2007)CrossRef
21.
go back to reference L. Abelmann, C. Lodder, Oblique evaporation and surface diffusion. Thin Solid Films 305, 1–21 (1997)CrossRef L. Abelmann, C. Lodder, Oblique evaporation and surface diffusion. Thin Solid Films 305, 1–21 (1997)CrossRef
22.
go back to reference K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara, Oblique-incidence anisotropy of the iron films evaporated at low substrate temperatures. J. Mag. Mag. Mat. 73, 161–166 (1988)CrossRef K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara, Oblique-incidence anisotropy of the iron films evaporated at low substrate temperatures. J. Mag. Mag. Mat. 73, 161–166 (1988)CrossRef
23.
go back to reference S. Liedtke-Grüner, in Growth of obliquely deposited metallic thin films. Dissertation, University Leipzig (2019) S. Liedtke-Grüner, in Growth of obliquely deposited metallic thin films. Dissertation, University Leipzig (2019)
24.
go back to reference T. Brown, K. Robbie, Observations of self-assembled microscale triangular-shaped spikes in copper and silver thin films. Thin Solid Films 531, 103–112 (2013)CrossRef T. Brown, K. Robbie, Observations of self-assembled microscale triangular-shaped spikes in copper and silver thin films. Thin Solid Films 531, 103–112 (2013)CrossRef
25.
go back to reference K. Itoh, F. Ichikawa, Y. Takahashi, K. Tsutsumi, Y. Noguchi, K. Okamoto, Columnar grain structure in cobalt films evaporated obliquely at low substrate temperatures. Jpn. J. Appl. Phys. 45, 2534–2538 (2006)CrossRef K. Itoh, F. Ichikawa, Y. Takahashi, K. Tsutsumi, Y. Noguchi, K. Okamoto, Columnar grain structure in cobalt films evaporated obliquely at low substrate temperatures. Jpn. J. Appl. Phys. 45, 2534–2538 (2006)CrossRef
26.
go back to reference E. Schubert, J. Fahlteich, Th. Höche, G. Wagner, B. Rauschenbach, Chiral silicon nanostructures. Nucl. Instr. Meth in Phys. Res. B 244, 40–44 (2006) E. Schubert, J. Fahlteich, Th. Höche, G. Wagner, B. Rauschenbach, Chiral silicon nanostructures. Nucl. Instr. Meth in Phys. Res. B 244, 40–44 (2006)
27.
go back to reference M. Malec, R.F. Egerton, Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. J. Vac. Sci. Technol. A 19, 158–166 (2001)CrossRef M. Malec, R.F. Egerton, Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. J. Vac. Sci. Technol. A 19, 158–166 (2001)CrossRef
28.
go back to reference Z. Dohnálek, G.A. Kimmel, D.E. McCready, J.S. Young, A. Dohnálková, R.S. Smith, B. D. Kay, Structural and chemical characterization of aligned crystalline nanoporous MgO films grown via reactive ballistic deposition. J. Phys. Chem. B 106, 3526–3529 Z. Dohnálek, G.A. Kimmel, D.E. McCready, J.S. Young, A. Dohnálková, R.S. Smith, B. D. Kay, Structural and chemical characterization of aligned crystalline nanoporous MgO films grown via reactive ballistic deposition. J. Phys. Chem. B 106, 3526–3529
29.
go back to reference K.M. Krause, D.W. Dick, M. Malac, M.J. Brett, Taking, a little off the top: nanorod arry morphology and growth studied by focused ion beam topography. Langmuir 26, 17558–21756 (2010)CrossRef K.M. Krause, D.W. Dick, M. Malac, M.J. Brett, Taking, a little off the top: nanorod arry morphology and growth studied by focused ion beam topography. Langmuir 26, 17558–21756 (2010)CrossRef
30.
go back to reference S. Liedtke, C. Grüner, A. Lotnyk, B. Rauschenbach, Glancing angle deposition of sculptured thin metal films at room temperature.Nanotechnology 28, 385604 (2017) S. Liedtke, C. Grüner, A. Lotnyk, B. Rauschenbach, Glancing angle deposition of sculptured thin metal films at room temperature.Nanotechnology 28, 385604 (2017)
31.
go back to reference M. J. Vold, A numerical approach to the problem of sediment volume. J. Colloid Sci. 14, 168–174 (1959) and Sediment volume and structure in dispersions of anisometric particles. J. Phys. Chem. 63, 1608–1612 (1959) M. J. Vold, A numerical approach to the problem of sediment volume. J. Colloid Sci. 14, 168174 (1959) and Sediment volume and structure in dispersions of anisometric particles. J. Phys. Chem. 63, 1608–1612 (1959)
32.
go back to reference P. Meakin, Models for colloidal aggregation. Ann. Rev. Phys. Chem. 39, 237–267 (1988)CrossRef P. Meakin, Models for colloidal aggregation. Ann. Rev. Phys. Chem. 39, 237–267 (1988)CrossRef
33.
go back to reference P. Meakin, R. Jullien, Restructuring effects in the rain model for random deposition. J. Physique 48, 1651–1662 (1987)CrossRef P. Meakin, R. Jullien, Restructuring effects in the rain model for random deposition. J. Physique 48, 1651–1662 (1987)CrossRef
34.
go back to reference P. Meakin, R. Jullien, Simple ballistic deposition models for the formation of thin films. Proc. SPIE 0821 (1988) P. Meakin, R. Jullien, Simple ballistic deposition models for the formation of thin films. Proc. SPIE 0821 (1988)
35.
go back to reference M. Teschner, S. Kimmerle, B. Heidelberger G. Zachmann L. Raghupathi A. Fuhrmann, M.‐P. Cani, F. Faure, N. Magnenat‐Thalmann, W. Strasser, P. Volino Collision detection for deformable objects. Computer Graphics Forum 24, 61–81 (2005) M. Teschner, S. Kimmerle, B. Heidelberger G. Zachmann L. Raghupathi A. Fuhrmann, M.‐P. Cani, F. Faure, N. Magnenat‐Thalmann, W. Strasser, P. Volino Collision detection for deformable objects. Computer Graphics Forum 24, 61–81 (2005)
36.
go back to reference D. Henderson, M.H. Brodsky, P. Chaudhari, Simulation of structural anisotropy and void formation in amorphous thin films. Appl. Phys. Lett. 25, 641–643 (1974)CrossRef D. Henderson, M.H. Brodsky, P. Chaudhari, Simulation of structural anisotropy and void formation in amorphous thin films. Appl. Phys. Lett. 25, 641–643 (1974)CrossRef
37.
go back to reference A.G. Dirks, H.A. Leamy, Columnar microstructure in vapor-deposited thin films. Thin Solid Films 47, 219–233 (1977)CrossRef A.G. Dirks, H.A. Leamy, Columnar microstructure in vapor-deposited thin films. Thin Solid Films 47, 219–233 (1977)CrossRef
38.
go back to reference H.A. Leamy, G.H. Gilmer, A.G. Dirks, The microstructure of vapor deposited thin films, in Current Topics in Materials Science, ed. by E. Kaldis, Vol. 6 (North-Holland, 1980), pp. 301–344 H.A. Leamy, G.H. Gilmer, A.G. Dirks, The microstructure of vapor deposited thin films, in Current Topics in Materials Science, ed. by E. Kaldis, Vol. 6 (North-Holland, 1980), pp. 301–344
39.
go back to reference P. Ramanlal, L.M. Sander, Theory of ballistic aggregation. Phys. Rev. Lett. 54, 1828–1831 (1985)CrossRef P. Ramanlal, L.M. Sander, Theory of ballistic aggregation. Phys. Rev. Lett. 54, 1828–1831 (1985)CrossRef
40.
go back to reference R. Jullien, P. Meakin, Simple three-dimensional models for ballistic deposition with restructuring. Europhys. Lett. 4, 1385–1390 (1987)CrossRef R. Jullien, P. Meakin, Simple three-dimensional models for ballistic deposition with restructuring. Europhys. Lett. 4, 1385–1390 (1987)CrossRef
41.
go back to reference C. Grüner, S. Liedtke, J. Bauer, S.G. Mayr, B. Rauschenbach, Morphology of thin films formed by oblique physical vapor deposition. ACS Appl. Nano Mater. 1, 1370–1376 (2018)CrossRef C. Grüner, S. Liedtke, J. Bauer, S.G. Mayr, B. Rauschenbach, Morphology of thin films formed by oblique physical vapor deposition. ACS Appl. Nano Mater. 1, 1370–1376 (2018)CrossRef
42.
go back to reference P. Meakin, P. Ramanlal, L.M. Sander, R.C. Ball, Ballistic deposition on surfaces. Phys Rev. A 34, 5091–5103 (1986)CrossRef P. Meakin, P. Ramanlal, L.M. Sander, R.C. Ball, Ballistic deposition on surfaces. Phys Rev. A 34, 5091–5103 (1986)CrossRef
43.
go back to reference D.X. Ye, T.M. Lu, Ballistic aggregation on two-dimensional arrays of seeds with oblique incident flux: growth model for amorphous Si on Si. Phys. Rev. B 75, 23540 (2007) D.X. Ye, T.M. Lu, Ballistic aggregation on two-dimensional arrays of seeds with oblique incident flux: growth model for amorphous Si on Si. Phys. Rev. B 75, 23540 (2007)
44.
go back to reference C. Patzig, T. Karabacak, B. Fuhrmann, B. Rauschenbach, Glancing angle sputter deposited nanostructures on rotating substrates: experiments and simulations. J. Appl. Phys. 104, 094318 (2008) C. Patzig, T. Karabacak, B. Fuhrmann, B. Rauschenbach, Glancing angle sputter deposited nanostructures on rotating substrates: experiments and simulations. J. Appl. Phys. 104, 094318 (2008)
45.
go back to reference T. Karabacak, Y.-P. Zhao, G.-C. Wang, T.-M. Lu, Growth-front roughening in amorphous silicon films by sputtering. Phys. Rev. B 64, 085322 (2001) T. Karabacak, Y.-P. Zhao, G.-C. Wang, T.-M. Lu, Growth-front roughening in amorphous silicon films by sputtering. Phys. Rev. B 64, 085322 (2001)
46.
go back to reference D.X. Ye, T.M. Lu, Fanlike aggregations on seeds by parallel ballistic flux: experimental results and Monte Carlo simulations of the growth of three-dimensional Si structures. Phys. Rev. B 75, 115420 (2007) D.X. Ye, T.M. Lu, Fanlike aggregations on seeds by parallel ballistic flux: experimental results and Monte Carlo simulations of the growth of three-dimensional Si structures. Phys. Rev. B 75, 115420 (2007)
47.
go back to reference B. Tanto, C.F. Doiron, T.M. Lu, Large artificial anisotropic growth rate in on-lattice simulation of obliquely deposited nanostructures. Phys. Rev. E 83, 016703 (2011) B. Tanto, C.F. Doiron, T.M. Lu, Large artificial anisotropic growth rate in on-lattice simulation of obliquely deposited nanostructures. Phys. Rev. E 83, 016703 (2011)
48.
go back to reference C. Grüner, S. Grüner, S.G. Mayr, B. Rauschenbach, Avoiding anisotropies in on-lattice simulations of ballistic deposition. Phys. Stat. Sol. (b) 258, 2000036 (2021) C. Grüner, S. Grüner, S.G. Mayr, B. Rauschenbach, Avoiding anisotropies in on-lattice simulations of ballistic deposition. Phys. Stat. Sol. (b) 258, 2000036 (2021)
49.
go back to reference T. Karabacak, J.P. Singh, Y.-P. Zhao, G.C. Wang, T.-M. Lu, Scaling during shadowing growth of isolated nanocolumns. Phys. Rev. B 68, 125408 (2003) T. Karabacak, J.P. Singh, Y.-P. Zhao, G.C. Wang, T.-M. Lu, Scaling during shadowing growth of isolated nanocolumns. Phys. Rev. B 68, 125408 (2003)
50.
go back to reference T. Karabacak, G.-C. Wang, T.-M. Lu, Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition. J. Vac. Sci. Technol. A 22, 1778–1784 (2004)CrossRef T. Karabacak, G.-C. Wang, T.-M. Lu, Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition. J. Vac. Sci. Technol. A 22, 1778–1784 (2004)CrossRef
51.
go back to reference C. Grüner, in Oblique angle deposition of thin films—theory, modelling and application. Dissertation, University Leipzig (2019) C. Grüner, in Oblique angle deposition of thin films—theory, modelling and application. Dissertation, University Leipzig (2019)
52.
go back to reference P.A. Sánchez, T. Sintes, J.H. E. Cartwright, O. Piro, Influence of microstructure on the transitions between mesoscopic thin-film morphologies in ballistic-diffusive models. Phys. Rev. E 81, 011140 (2010) P.A. Sánchez, T. Sintes, J.H. E. Cartwright, O. Piro, Influence of microstructure on the transitions between mesoscopic thin-film morphologies in ballistic-diffusive models. Phys. Rev. E 81, 011140 (2010)
53.
go back to reference T. Smy, D. Vick, M.J. Brett, S.K. Dew, A.T. Wu, J.C. Sit, K.D. Harris, Three-dimensional simulation of film microstructure produced by glancing angle deposition. J. Vac. Sci. Technol. A 18, 2507–2512 (2000)CrossRef T. Smy, D. Vick, M.J. Brett, S.K. Dew, A.T. Wu, J.C. Sit, K.D. Harris, Three-dimensional simulation of film microstructure produced by glancing angle deposition. J. Vac. Sci. Technol. A 18, 2507–2512 (2000)CrossRef
54.
go back to reference M. Suzuki, Y. Taga, Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys. 90, 5599–5606 (2001)CrossRef M. Suzuki, Y. Taga, Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys. 90, 5599–5606 (2001)CrossRef
55.
go back to reference Y. Saito, S. Omura, Domain competition during ballistic deposition: Effect of surface diffusion and surface patterning. Phys. Rev. E 84, 021601 (2011) Y. Saito, S. Omura, Domain competition during ballistic deposition: Effect of surface diffusion and surface patterning. Phys. Rev. E 84, 021601 (2011)
56.
go back to reference W. Jost, Diffusion in Solids, Liquids Gases (Academic Press, New York, 1970) W. Jost, Diffusion in Solids, Liquids Gases (Academic Press, New York, 1970)
57.
go back to reference S. Müller-Pfeiffer, H. van Kraneneburg, J.C. Lodder, A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of Co-Cr. Thin Solid Films 213, 143–153 (1992)CrossRef S. Müller-Pfeiffer, H. van Kraneneburg, J.C. Lodder, A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of Co-Cr. Thin Solid Films 213, 143–153 (1992)CrossRef
58.
go back to reference G. Ehrlich, Molecular processes at the gas-solid interface, in Structure and Properties of Thin Films, ed. by C.A. Neugebauer, J.B. Newkirk, D.A. Vermilyea (Wiley, New York, 1959), pp. 423–475 G. Ehrlich, Molecular processes at the gas-solid interface, in Structure and Properties of Thin Films, ed. by C.A. Neugebauer, J.B. Newkirk, D.A. Vermilyea (Wiley, New York, 1959), pp. 423–475
59.
go back to reference G. Neumann, W. Hirschwald, Mechanism of surface self diffusion. Z. Phys. Chem. B 81, 63–176 (1972) G. Neumann, W. Hirschwald, Mechanism of surface self diffusion. Z. Phys. Chem. B 81, 63–176 (1972)
60.
go back to reference S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Biaxially textured titanium thin films by oblique angle deposition: conditions and growth mechanisms. Phys. Stat. Sol. (a) 217, 1900636 (2019) S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, B. Rauschenbach, Biaxially textured titanium thin films by oblique angle deposition: conditions and growth mechanisms. Phys. Stat. Sol. (a) 217, 1900636 (2019)
61.
go back to reference K.-H. Müller, Dependence of thin-film microstructure on deposition rate by means of a computer simulation. J. Appl. Phys. 58, 2573–2576 (1985)CrossRef K.-H. Müller, Dependence of thin-film microstructure on deposition rate by means of a computer simulation. J. Appl. Phys. 58, 2573–2576 (1985)CrossRef
62.
go back to reference D. Bensimon, B. Shraiman, S. Liang, On the ballistic model of aggregation. Phys Lett. 102 A, 238–240 (1984) D. Bensimon, B. Shraiman, S. Liang, On the ballistic model of aggregation. Phys Lett. 102 A, 238–240 (1984)
63.
go back to reference M. Pelliccione, T.-M. Lu, Self-shadowing in ballistic fan formation from point seeds. Phys. Rev. B 75, 245431 (2007) M. Pelliccione, T.-M. Lu, Self-shadowing in ballistic fan formation from point seeds. Phys. Rev. B 75, 245431 (2007)
64.
go back to reference B. Tanto, G. Ten Eyck, T.-M. Lu, A model for column angle evolution during oblique angle deposition. J. Appl. Phys. 108, 026107 (2010) B. Tanto, G. Ten Eyck, T.-M. Lu, A model for column angle evolution during oblique angle deposition. J. Appl. Phys. 108, 026107 (2010)
65.
go back to reference S. Liang, L.P. Kadanoff, Scaling in a ballistic aggregation model. Phys. Rev. A 3, 2628–2630 (1985)CrossRef S. Liang, L.P. Kadanoff, Scaling in a ballistic aggregation model. Phys. Rev. A 3, 2628–2630 (1985)CrossRef
66.
go back to reference J. Krug, P. Meakin, Columnar growth in oblique incidence ballistic deposition: faceting, noise reduction, and mean-field theory. Phys. Rev. A 43, 900–919 (1991)CrossRef J. Krug, P. Meakin, Columnar growth in oblique incidence ballistic deposition: faceting, noise reduction, and mean-field theory. Phys. Rev. A 43, 900–919 (1991)CrossRef
67.
go back to reference F. Porcú, F. Prodi, Ballistic accretion on seeds of different sizes. Phys. Rev. A 44, 8313–8315 (1991)CrossRef F. Porcú, F. Prodi, Ballistic accretion on seeds of different sizes. Phys. Rev. A 44, 8313–8315 (1991)CrossRef
68.
go back to reference A.V. Limaye, R.E. Amritkar, Theory of growth of ballistic aggregates. Phys. Rev. A 34, 5085–5090 (1986)CrossRef A.V. Limaye, R.E. Amritkar, Theory of growth of ballistic aggregates. Phys. Rev. A 34, 5085–5090 (1986)CrossRef
69.
go back to reference A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267–288 (1967) A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267–288 (1967)
70.
go back to reference B. Rauschenbach, C. Patzig, Dünne Schichten durch Deposition unter streifenden Einfall. Vakuum für Forschung & Techn. 22, 14–19 (2010)CrossRef B. Rauschenbach, C. Patzig, Dünne Schichten durch Deposition unter streifenden Einfall. Vakuum für Forschung & Techn. 22, 14–19 (2010)CrossRef
71.
go back to reference A. Amassian, K. Kaminska, M. Suzuki, L. Martinu, K. Robbie, Onset of shadowing-dominated growth in glancing angle deposition. Appl. Phys. Lett. 91, 173114 (2007) A. Amassian, K. Kaminska, M. Suzuki, L. Martinu, K. Robbie, Onset of shadowing-dominated growth in glancing angle deposition. Appl. Phys. Lett. 91, 173114 (2007)
72.
go back to reference C. Patzig, in Glancing angle deposition of silicon nanostructures by ion beam sputtering. Dissertation, University Leipzig (2009) C. Patzig, in Glancing angle deposition of silicon nanostructures by ion beam sputtering. Dissertation, University Leipzig (2009)
73.
go back to reference C. Khare, J.W. Gerlach, M. Weise, J. Bauer, T. Höche, B. Rauschenbach, Growth temperature altered morphology of Ge nanocolumns. Phys. Stat. Sol. A 208, 851–856 (2011) C. Khare, J.W. Gerlach, M. Weise, J. Bauer, T. Höche, B. Rauschenbach, Growth temperature altered morphology of Ge nanocolumns. Phys. Stat. Sol. A 208, 851–856 (2011)
74.
go back to reference C. Khare, J.W. Gerlach, T. Höche, B. Fuhrmann, H.S. Leipner, B. Rauschenbach, Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition. Appl. Surf. Sci. 258, 9762–9769 (2012)CrossRef C. Khare, J.W. Gerlach, T. Höche, B. Fuhrmann, H.S. Leipner, B. Rauschenbach, Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition. Appl. Surf. Sci. 258, 9762–9769 (2012)CrossRef
75.
go back to reference C. Khare, J.W. Gerlach, B. Fuhrmann, B. Rauschenbach, Influence of substrate temperature on glancing angle deposited Ag nanorods. J. Vac. Sci. Technol. A 28, 1002–1009 (2010)CrossRef C. Khare, J.W. Gerlach, B. Fuhrmann, B. Rauschenbach, Influence of substrate temperature on glancing angle deposited Ag nanorods. J. Vac. Sci. Technol. A 28, 1002–1009 (2010)CrossRef
76.
go back to reference C. Khare, Gowth of Ge, Ag and multilayered Si/Ge nanostructures by ion beam sputter glancing angle deposition. Disserataion, University Leipzig (2012) C. Khare, Gowth of Ge, Ag and multilayered Si/Ge nanostructures by ion beam sputter glancing angle deposition. Disserataion, University Leipzig (2012)
77.
go back to reference M.O. Jensen, M.J. Brett, Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80, 763–768 (2005)CrossRef M.O. Jensen, M.J. Brett, Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80, 763–768 (2005)CrossRef
78.
go back to reference D.X. Ye, T. Karabacak, B.K. Lim, G.C. Wang, T.M. Lu, Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation. Nanotechnology 15, 817–821 (2004)CrossRef D.X. Ye, T. Karabacak, B.K. Lim, G.C. Wang, T.M. Lu, Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation. Nanotechnology 15, 817–821 (2004)CrossRef
79.
go back to reference C. Khare, R. Fechner, J. Bauer, M. Weise, B. Rauschenbach, Glancing angle deposition of Ge nanorod arrays on Si patterned substrates. J. Vac. Sci. Technol. A 29, 041503 (2011) C. Khare, R. Fechner, J. Bauer, M. Weise, B. Rauschenbach, Glancing angle deposition of Ge nanorod arrays on Si patterned substrates. J. Vac. Sci. Technol. A 29, 041503 (2011)
80.
go back to reference C. Khare, B. Fuhrmann, H.S. Leipner, J. Bauer, B. Rauschenbach, Optimized growth of Ge nanorod arrays on Si patterns. J. Vac. Sci. Technol. A 29, 051501 (2011) C. Khare, B. Fuhrmann, H.S. Leipner, J. Bauer, B. Rauschenbach, Optimized growth of Ge nanorod arrays on Si patterns. J. Vac. Sci. Technol. A 29, 051501 (2011)
81.
go back to reference S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, M. Mensing, P. Schumacher, B. Rauschenbach, Crystallinity and texture of molybdenum thin films obliquely deposited at room temperature. Thin Solid Films 685, 6–16 (2019)CrossRef S. Liedtke-Grüner, C. Grüner, A. Lotnyk, J.W. Gerlach, M. Mensing, P. Schumacher, B. Rauschenbach, Crystallinity and texture of molybdenum thin films obliquely deposited at room temperature. Thin Solid Films 685, 6–16 (2019)CrossRef
82.
go back to reference S. Lichter, J. Chen, Model for columnar microstructure of thin solid films. Phys. Rev. Lett. 56, 1396–1399 (1986)CrossRef S. Lichter, J. Chen, Model for columnar microstructure of thin solid films. Phys. Rev. Lett. 56, 1396–1399 (1986)CrossRef
83.
go back to reference R. Fiedler, G. Schirmer, Säulenwachstum bei aufgedampften Schichten. Thin Solid Films 167, 281–289 (1988)CrossRef R. Fiedler, G. Schirmer, Säulenwachstum bei aufgedampften Schichten. Thin Solid Films 167, 281–289 (1988)CrossRef
84.
go back to reference Y. D. Fan, X. P. Li, J. Yang, J. P. Li, Microscopic model for columnar growth of thin films. Phys. Stat. Sol. (a) 134, 157–166 (1992) Y. D. Fan, X. P. Li, J. Yang, J. P. Li, Microscopic model for columnar growth of thin films. Phys. Stat. Sol. (a) 134, 157–166 (1992)
85.
go back to reference R.N. Tait, T. Smy, M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196–201 (1993)CrossRef R.N. Tait, T. Smy, M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196–201 (1993)CrossRef
86.
go back to reference Hodgkinson, I., Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Optics 37, 2653–2659 (1998) Hodgkinson, I., Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Optics 37, 2653–2659 (1998)
87.
go back to reference H. Zhu, W. Cao, G. K. Larsen, R. Toole, Y. Zhao, Tilting angle of nanocolumnar films fabricated by oblique angle deposition. J. Vac. Sci. Technol. B 30, 030606 (2012) H. Zhu, W. Cao, G. K. Larsen, R. Toole, Y. Zhao, Tilting angle of nanocolumnar films fabricated by oblique angle deposition. J. Vac. Sci. Technol. B 30, 030606 (2012)
88.
go back to reference D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, E. F. Schubert, Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition. Appl. Phys. Lett. 93, 101914 (2008) D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, E. F. Schubert, Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition. Appl. Phys. Lett. 93, 101914 (2008)
89.
go back to reference R. Messier, T. Gehrke, C. Frankel, V.C. Venugopal, W. Otaño, A. Lakhtakia, Engineered sculptured nematic thin films. J. Vac. Sci. Techn. 15, 2148–2152 (1994)CrossRef R. Messier, T. Gehrke, C. Frankel, V.C. Venugopal, W. Otaño, A. Lakhtakia, Engineered sculptured nematic thin films. J. Vac. Sci. Techn. 15, 2148–2152 (1994)CrossRef
90.
go back to reference M. Malac, R.F. Egerton, M.J. Brett, B. Dick, Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B 17, 2671–2674 (1999)CrossRef M. Malac, R.F. Egerton, M.J. Brett, B. Dick, Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B 17, 2671–2674 (1999)CrossRef
91.
go back to reference C. Patzig, C. Khare, B. Fuhrmann, B. Rauschenbach, Periodically arranged Si nanostructures by glancing angle deposition on patterned substrates. Phys. Stat. Sol. (b) 247, 1322–1344 (2010) C. Patzig, C. Khare, B. Fuhrmann, B. Rauschenbach, Periodically arranged Si nanostructures by glancing angle deposition on patterned substrates. Phys. Stat. Sol. (b) 247, 1322–1344 (2010)
92.
go back to reference D.-X. Ye, C. L. Ellison, B.-K. Lim, T.-M. Lu, Shadowing growth of three-dimensional nanostructures on finite size seeds. J. Appl. Phys. 103, 103531 (2008) D.-X. Ye, C. L. Ellison, B.-K. Lim, T.-M. Lu, Shadowing growth of three-dimensional nanostructures on finite size seeds. J. Appl. Phys. 103, 103531 (2008)
93.
go back to reference D.-X. Ye, in Shadowing growth by physical vapor deposition. Dissertation, Rensselaer Polytechnic Institute Troy, New York (2006) D.-X. Ye, in Shadowing growth by physical vapor deposition. Dissertation, Rensselaer Polytechnic Institute Troy, New York (2006)
94.
go back to reference M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Blending of nanoscale and microscale in uniform large–area sculptured thin–film architectures. Nanotechnology 15, 303–310 (2004)CrossRef M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Blending of nanoscale and microscale in uniform large–area sculptured thin–film architectures. Nanotechnology 15, 303–310 (2004)CrossRef
95.
go back to reference S. Kesapragada, P. Sotherland, D. Gall, Ta nanotubes grown by glancing angle deposition. J. Vac. Sci. Technol. B 26, 678–681 (2008)CrossRef S. Kesapragada, P. Sotherland, D. Gall, Ta nanotubes grown by glancing angle deposition. J. Vac. Sci. Technol. B 26, 678–681 (2008)CrossRef
96.
go back to reference M. Summers, B. Djurfors, M. Brett, Fabrication of silicon submicrometer ribbons by glancing angle deposition. J. Micro/Nanolithography, MEMS and MOEMS 4, 033012 (2005) M. Summers, B. Djurfors, M. Brett, Fabrication of silicon submicrometer ribbons by glancing angle deposition. J. Micro/Nanolithography, MEMS and MOEMS 4, 033012 (2005)
97.
go back to reference C. Patzig, B. Rauschenbach, B. Fuhrmann, H.S. Leipner, Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition, J. Appl. Phys. 103, 024313 (2008) C. Patzig, B. Rauschenbach, B. Fuhrmann, H.S. Leipner, Growth of Si nanorods in honeycomb and hexagonal-closed-packed arrays using glancing angle deposition, J. Appl. Phys. 103, 024313 (2008)
98.
go back to reference C.M. Zhou, D. Gall, Growth competition during glancing angle deposition of nanorod honeycomb arrays. Appl. Phys. Lett. 90, 093103 (2007) C.M. Zhou, D. Gall, Growth competition during glancing angle deposition of nanorod honeycomb arrays. Appl. Phys. Lett. 90, 093103 (2007)
99.
go back to reference C. Zhou, D. Gall, Surface patterning by nanosphere lithography for layer growth with ordered pores. Thin Solid Films 516, 433–437 (2007)CrossRef C. Zhou, D. Gall, Surface patterning by nanosphere lithography for layer growth with ordered pores. Thin Solid Films 516, 433–437 (2007)CrossRef
100.
go back to reference A. Pawar, I. Kretzschmar, Patchey particles by glancing angle deposition. Langmuir 24, 355–358 (2008)CrossRef A. Pawar, I. Kretzschmar, Patchey particles by glancing angle deposition. Langmuir 24, 355–358 (2008)CrossRef
101.
go back to reference B. Dick, J.C. Sit, M.J. Brett, I.M.N. Votte, C.W.M. Bastiaansen, Embossed polymetric relief structures as a template for the growth of periodic inorganic microstructures. Nano Lett. 1, 71–73 (2001)CrossRef B. Dick, J.C. Sit, M.J. Brett, I.M.N. Votte, C.W.M. Bastiaansen, Embossed polymetric relief structures as a template for the growth of periodic inorganic microstructures. Nano Lett. 1, 71–73 (2001)CrossRef
102.
go back to reference S. Krishnamoorthy, C. Hinderling, H. Heinzelmann, Nanoscale patterning with block copolymers. Mater. Today 9, 40–47 (2006)CrossRef S. Krishnamoorthy, C. Hinderling, H. Heinzelmann, Nanoscale patterning with block copolymers. Mater. Today 9, 40–47 (2006)CrossRef
103.
go back to reference M. Mäder, T. Höche, J.W. Gerlach, R. Böhme, K. Zimmer, B. Rauschenbach, Large area metal dot matrices made by diffraction mask projection laser ablation. Phys. Stat. Sol. (RRL) 2, 34–36 (2008) M. Mäder, T. Höche, J.W. Gerlach, R. Böhme, K. Zimmer, B. Rauschenbach, Large area metal dot matrices made by diffraction mask projection laser ablation. Phys. Stat. Sol. (RRL) 2, 34–36 (2008)
104.
go back to reference M.O. Jensen, M.J. Brett, Periodically structured glancing angle depsoition thin films. IEEE Trans. Nanotechnol. 4, 269–277 (2005)CrossRef M.O. Jensen, M.J. Brett, Periodically structured glancing angle depsoition thin films. IEEE Trans. Nanotechnol. 4, 269–277 (2005)CrossRef
105.
go back to reference E. Main, T. Karabacak, T.M. Lu, Continuum model for nanocolumn growth during oblique angle deposition. J. Appl. Phys. 95, 4346–4351 (2004)CrossRef E. Main, T. Karabacak, T.M. Lu, Continuum model for nanocolumn growth during oblique angle deposition. J. Appl. Phys. 95, 4346–4351 (2004)CrossRef
106.
go back to reference M. Weise, in Dreidimensionale Germanium- und Siliziumstrukturen. Unpublished Diploma thesis, Universität Leipzig (2010) M. Weise, in Dreidimensionale Germanium- und Siliziumstrukturen. Unpublished Diploma thesis, Universität Leipzig (2010)
107.
go back to reference B. Dick, M.J. Brett, T. Smy, M. Belov, M.R. Freeman, Periodic submicrometer structures by sputtering. J. Vac. Sci. Technol. B 19, 1813–1819 (2001)CrossRef B. Dick, M.J. Brett, T. Smy, M. Belov, M.R. Freeman, Periodic submicrometer structures by sputtering. J. Vac. Sci. Technol. B 19, 1813–1819 (2001)CrossRef
108.
go back to reference J. Bauer, M. Weise, B. Rauschenbach, N. Geyer, B. Fuhrmann, Shape evolution in glancing angle deposition of arranged germanium nanocolumns. J. Appl. Phys. 111, 104309 (2012) J. Bauer, M. Weise, B. Rauschenbach, N. Geyer, B. Fuhrmann, Shape evolution in glancing angle deposition of arranged germanium nanocolumns. J. Appl. Phys. 111, 104309 (2012)
109.
go back to reference I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28, 214–242 (2008)CrossRef I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28, 214–242 (2008)CrossRef
110.
go back to reference A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser & Photonics Rev. 5, 571–606 (2011)CrossRef A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser & Photonics Rev. 5, 571–606 (2011)CrossRef
111.
go back to reference M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)CrossRef M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)CrossRef
112.
go back to reference M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRef M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRef
113.
go back to reference S.K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, I. Abdulhalim, SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10, 579–3587 (2014)CrossRef S.K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, I. Abdulhalim, SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10, 579–3587 (2014)CrossRef
114.
go back to reference I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl. Phys. Lett. 94, 063106 (2009) I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl. Phys. Lett. 94, 063106 (2009)
115.
go back to reference Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 41, 152007 (2008) Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 41, 152007 (2008)
116.
go back to reference J.R. Sánchez-Valencia, J. Toudert, A. Borras, C. López-Santos, A. Barranco, I.O. Feliu, A.R. González-Elipe, Tunable in-plane optical anisotropy of Ag nanoparticles deposited by DC sputtering onto SiO2 nanocolumnar films. Plasmonics 5, 241–250 (2010)CrossRef J.R. Sánchez-Valencia, J. Toudert, A. Borras, C. López-Santos, A. Barranco, I.O. Feliu, A.R. González-Elipe, Tunable in-plane optical anisotropy of Ag nanoparticles deposited by DC sputtering onto SiO2 nanocolumnar films. Plasmonics 5, 241–250 (2010)CrossRef
117.
go back to reference A. Karabchevsky, C. Khare, B. Rauschenbach, I. Abdulhalim, Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films, J. Nanophotonics 6, 061508 (2012) A. Karabchevsky, C. Khare, B. Rauschenbach, I. Abdulhalim, Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films, J. Nanophotonics 6, 061508 (2012)
118.
go back to reference S.K. Srivastava, C. Grüner, D. Hirsch, B. Rauschenbach, I. Abdulhalim, Enhanced intrinsic fluorescence from carboxidized nano-sculptured thin films of silver and their application for label free dual detection of glycated hemoglobin. Opt. Express 25, 4761–4772 (2017)CrossRef S.K. Srivastava, C. Grüner, D. Hirsch, B. Rauschenbach, I. Abdulhalim, Enhanced intrinsic fluorescence from carboxidized nano-sculptured thin films of silver and their application for label free dual detection of glycated hemoglobin. Opt. Express 25, 4761–4772 (2017)CrossRef
119.
go back to reference S.Y. Song, Y.D. Han, Y.M. Park, C.Y. Jeong, Y.J. Yang, M.S. Kim, Y. Ku, H.C. Yoon, Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron. 35, 355–362 (2012)CrossRef S.Y. Song, Y.D. Han, Y.M. Park, C.Y. Jeong, Y.J. Yang, M.S. Kim, Y. Ku, H.C. Yoon, Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron. 35, 355–362 (2012)CrossRef
120.
go back to reference Y. Wang, L. Wu, T.I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, B. Liedberg, Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale 8, 8008–8016 (2016)CrossRef Y. Wang, L. Wu, T.I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, B. Liedberg, Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale 8, 8008–8016 (2016)CrossRef
121.
go back to reference S.K. Srivastava, H.B. Hamo, A. Kushmaro, R.S. Marks, C. Grüner, B. Rauschenbach, I. Abdulhalim, Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. The Analyst 140, 3201–3209 (2015) S.K. Srivastava, H.B. Hamo, A. Kushmaro, R.S. Marks, C. Grüner, B. Rauschenbach, I. Abdulhalim, Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. The Analyst 140, 3201–3209 (2015)
122.
go back to reference B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, Recent advances in recognition elements of food and environmental biosensors: a review. Biosens. Bioelectron. 26, 1178–1194 (2010)CrossRef B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, Recent advances in recognition elements of food and environmental biosensors: a review. Biosens. Bioelectron. 26, 1178–1194 (2010)CrossRef
123.
go back to reference O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, K. Nielsch, Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. Phys. Stat. Sol. (b) 247, 1365–1371 (2010) O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, K. Nielsch, Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. Phys. Stat. Sol. (b) 247, 1365–1371 (2010)
124.
go back to reference O. Albrecht, R. Zierold, S. Allende, J. Escrig, C. Patzig, B. Rauschenbach, K. Nielsch, D. Görlitz, Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes, J. Appl. Phys. 109, 093910 (2011) O. Albrecht, R. Zierold, S. Allende, J. Escrig, C. Patzig, B. Rauschenbach, K. Nielsch, D. Görlitz, Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes, J. Appl. Phys. 109, 093910 (2011)
Metadata
Title
Ion Beam Sputtering Induced Glancing Angle Deposition
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_11

Premium Partners