Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Ionic Conductors and Aspects Related to High Temperature

Authors : Xuefeng Zhu, Weishen Yang

Published in: Mixed Conducting Ceramic Membranes

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ionic conductivity of perovskite-type MIEC membranes is several orders of magnitude lower than their electronic conductivity; however, the ambipolar conductivity determines the diffusion rate of oxygen ions in the membrane bulk. Therefore, the improvement of oxygen ionic conductivity is the key to enhance the oxygen permeability of an MIEC material. In this chapter, the common oxygen ionic conductors with fluorite and perovskite structures are introduced in detail, and other types of oxygen ionic conductors, such as Bi4V2O11, La2Mo2O9, and La10-x Si6O26+y , are briefly presented. The critical factors influencing the oxygen ionic conductivity are discussed for the perovskite-type oxygen ionic conductors and MIEC conductors. All the oxygen ionic conducting materials can be made into MIEC membranes for oxygen permeation as long as they are properly doped by elements with variable valence states or mixed with a secondary phase with electronic conduction. MIEC membranes are all operated at high temperatures, and thus, the special properties related to high temperature, such as cationic diffusion, kinetic demixing, thermal expansion, chemical expansion, and creep, are briefly introduced to show that several factors should be considered to design or select a practically applicable MIEC membrane material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide Ion conductors for solid oxide fuel cells. Ionics 4:403–408CrossRef Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide Ion conductors for solid oxide fuel cells. Ionics 4:403–408CrossRef
2.
go back to reference Dixon M, Lagrange LD, Merten U, Miller CF, Porter JT (1963) Electrical resistivity of stabilized zirconia at elevated temperatures. J Electrochem Soc 110:276–280CrossRef Dixon M, Lagrange LD, Merten U, Miller CF, Porter JT (1963) Electrical resistivity of stabilized zirconia at elevated temperatures. J Electrochem Soc 110:276–280CrossRef
3.
go back to reference Strickler DW, Carlson WG (1965) Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems. J Am Ceram Soc 48:286–289CrossRef Strickler DW, Carlson WG (1965) Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems. J Am Ceram Soc 48:286–289CrossRef
4.
go back to reference Hohnke DK (1981) Ionic conduction in doped oxides with the fluorite structure. Solid State Ionics 5:531–534CrossRef Hohnke DK (1981) Ionic conduction in doped oxides with the fluorite structure. Solid State Ionics 5:531–534CrossRef
5.
go back to reference Singhal SC, Kendall K (2002) High temperature solid oxide fuel cells: fundamentals, design and applications. Mater today 5:55 Singhal SC, Kendall K (2002) High temperature solid oxide fuel cells: fundamentals, design and applications. Mater today 5:55
6.
go back to reference Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics 121:133–139CrossRef Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics 121:133–139CrossRef
7.
go back to reference Badwal SPS, Ciacchi FT, Milosevic D (2000) Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics 136:91–99CrossRef Badwal SPS, Ciacchi FT, Milosevic D (2000) Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics 136:91–99CrossRef
8.
go back to reference Haering C, Roosen A, Schichl H, Schnöller M (2005) Degradation of the electrical conductivity in stabilized zirconia system: part II: Scandia-stabilized zirconia. Solid State Ionics 176:261–268CrossRef Haering C, Roosen A, Schichl H, Schnöller M (2005) Degradation of the electrical conductivity in stabilized zirconia system: part II: Scandia-stabilized zirconia. Solid State Ionics 176:261–268CrossRef
9.
go back to reference Lee DS, Kim WS, Choi SH, Kim J, Lee HW, Lee JH (2005) Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics 176:33–39CrossRef Lee DS, Kim WS, Choi SH, Kim J, Lee HW, Lee JH (2005) Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics 176:33–39CrossRef
10.
go back to reference Liu M, He CG, Wang JX, Wang WG, Wang ZW (2010) Investigation of (CeO2) x (Sc2O3)0.11−x (ZrO2)0.89 (x = 0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell. J Alloy Compd 502:319–323CrossRef Liu M, He CG, Wang JX, Wang WG, Wang ZW (2010) Investigation of (CeO2) x (Sc2O3)0.11−x (ZrO2)0.89 (x = 0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell. J Alloy Compd 502:319–323CrossRef
11.
go back to reference Kawamura K, Watanabe K, Hiramatsu T, Kaimai A, Nigara Y, Kawada T, Mizusaki J (2001) Electrical conductivities of CaO doped ZrO2-CeO2 solid solution system. Solid State Ionics 144:11–18CrossRef Kawamura K, Watanabe K, Hiramatsu T, Kaimai A, Nigara Y, Kawada T, Mizusaki J (2001) Electrical conductivities of CaO doped ZrO2-CeO2 solid solution system. Solid State Ionics 144:11–18CrossRef
12.
go back to reference Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16CrossRef Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16CrossRef
13.
go back to reference Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J Appl Electrochem 18:527–531CrossRef Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J Appl Electrochem 18:527–531CrossRef
14.
go back to reference Yahiro H, Eguchi K, Arai H (1989) Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36:71–75CrossRef Yahiro H, Eguchi K, Arai H (1989) Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36:71–75CrossRef
15.
go back to reference Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ionics 52:165–172CrossRef Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ionics 52:165–172CrossRef
16.
go back to reference Zha SW, Xia CR, Gy M (2003) Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115:44–48CrossRef Zha SW, Xia CR, Gy M (2003) Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115:44–48CrossRef
17.
go back to reference Kudo T, Obayashi H (1976) Mixed electrical conduction in the fluorite-type Ce1-x Gdx O2-x/2. J Electrochem Soc 123:415–419CrossRef Kudo T, Obayashi H (1976) Mixed electrical conduction in the fluorite-type Ce1-x Gdx O2-x/2. J Electrochem Soc 123:415–419CrossRef
18.
go back to reference Steele BCH (2000) Appraisal of Ce1−y Gd y O2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129:95–110CrossRef Steele BCH (2000) Appraisal of Ce1−y Gd y O2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129:95–110CrossRef
19.
go back to reference Kim N, Kim BH, Lee D (2000) Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J Power Sources 90:139–143CrossRef Kim N, Kim BH, Lee D (2000) Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J Power Sources 90:139–143CrossRef
20.
go back to reference Wang FY, Chen SY, Cheng S (2004) Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells. Electrochem Commun 6:743–746CrossRef Wang FY, Chen SY, Cheng S (2004) Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells. Electrochem Commun 6:743–746CrossRef
21.
go back to reference Mori T, Yamamura H, Saito S (1996) Preparation of an alkali-element-doped CeO2-Sm2O3 system and its operation properties as the electrolyte in planar solid oxide fuel cells. J Am Ceram Soc 79:3309–3312CrossRef Mori T, Yamamura H, Saito S (1996) Preparation of an alkali-element-doped CeO2-Sm2O3 system and its operation properties as the electrolyte in planar solid oxide fuel cells. J Am Ceram Soc 79:3309–3312CrossRef
22.
go back to reference Parkash O, Singh N, Singh NK, Kumar D (2012) Preparation and characterization of ceria co-doped with Ca and Mg. Solid State Ionics 212:100–105CrossRef Parkash O, Singh N, Singh NK, Kumar D (2012) Preparation and characterization of ceria co-doped with Ca and Mg. Solid State Ionics 212:100–105CrossRef
23.
go back to reference Kahlaoui M, Chefi S, Inoubli A, Madani A, Chefi C (2013) Synthesis and electrical properties of co-doping with La3+, Nd3+, Y3+, and Eu3+ citric acid-nitrate prepared samarium-doped ceria ceramics. Ceram Int 39:3873–3879CrossRef Kahlaoui M, Chefi S, Inoubli A, Madani A, Chefi C (2013) Synthesis and electrical properties of co-doping with La3+, Nd3+, Y3+, and Eu3+ citric acid-nitrate prepared samarium-doped ceria ceramics. Ceram Int 39:3873–3879CrossRef
24.
go back to reference Guan XF, Zhou HP, Wang YN, Zhang J (2008) Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J Alloy Compd 464:310–316CrossRef Guan XF, Zhou HP, Wang YN, Zhang J (2008) Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J Alloy Compd 464:310–316CrossRef
25.
go back to reference Sha XQ, Lu Z, Huang XQ, Miao JP, Jia L, Xin XS, Su WH (2006) Preparation and properties of rare earth co-doped Ce0.8Sm0.2−x Y x O1.9 electrolyte materials for SOFC. J Alloy Compd 424:315–321CrossRef Sha XQ, Lu Z, Huang XQ, Miao JP, Jia L, Xin XS, Su WH (2006) Preparation and properties of rare earth co-doped Ce0.8Sm0.2−x Y x O1.9 electrolyte materials for SOFC. J Alloy Compd 424:315–321CrossRef
26.
go back to reference Ma L, Zhao K, Kim BH, Li Q, Huang JL (2015) Electrochemical performance of solid oxide fuel cells with Sm, Nd co-doped Ce0.85(Sm x Nd1−x )0.15O2−δ electrolyte. Ceram Int 41:6391–6397CrossRef Ma L, Zhao K, Kim BH, Li Q, Huang JL (2015) Electrochemical performance of solid oxide fuel cells with Sm, Nd co-doped Ce0.85(Sm x Nd1−x )0.15O2−δ electrolyte. Ceram Int 41:6391–6397CrossRef
27.
go back to reference Dikmen S (2010) Effect of co-doping with Sm3+, Bi3+, La3+, and Nd3+ on the electrochemical properties of hydrothermally prepared gadolinium-doped ceria ceramics. J Alloy Compd 494:106–112CrossRef Dikmen S (2010) Effect of co-doping with Sm3+, Bi3+, La3+, and Nd3+ on the electrochemical properties of hydrothermally prepared gadolinium-doped ceria ceramics. J Alloy Compd 494:106–112CrossRef
28.
go back to reference Shuk P, Greenblatt M (1999) Hydrothermal synthesis and properties of mixed conductors based on Ce1−x Pr x O2−δ solid solutions. Solid State Ionics 116:217–223CrossRef Shuk P, Greenblatt M (1999) Hydrothermal synthesis and properties of mixed conductors based on Ce1−x Pr x O2−δ solid solutions. Solid State Ionics 116:217–223CrossRef
29.
go back to reference Fagga DP, Kharton VV, Shaula A, Marozau IP, Frade JR (2005) Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr, Zr)O2−δ. Solid State Ionics 176:1723–1730CrossRef Fagga DP, Kharton VV, Shaula A, Marozau IP, Frade JR (2005) Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr, Zr)O2−δ. Solid State Ionics 176:1723–1730CrossRef
30.
go back to reference Fagg DP, Shaula AL, Kharton VV, Frade JR (2007) High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. J Merbrane Sci 299:1–7CrossRef Fagg DP, Shaula AL, Kharton VV, Frade JR (2007) High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. J Merbrane Sci 299:1–7CrossRef
31.
go back to reference Balaguer M, Solís C, Serra JM (2011) Study of the transport properties of the mixed ionic electronic conductor Ce1−x Tb x O2−δ + Co (x = 0.1, 0.2) and evaluation as oxygen-transport membrane. Chem Mater 23:2333–2343CrossRef Balaguer M, Solís C, Serra JM (2011) Study of the transport properties of the mixed ionic electronic conductor Ce1−x Tb x O2−δ + Co (x = 0.1, 0.2) and evaluation as oxygen-transport membrane. Chem Mater 23:2333–2343CrossRef
32.
go back to reference Gattow G, Schroder H (1962) Über Wismutoxide. III. Die kristallsttruker der hochtemperaturemodikation von Wismut (III)-oxid (δ-Bi2O3). Z Anorg Allg Chem 318:176–189CrossRef Gattow G, Schroder H (1962) Über Wismutoxide. III. Die kristallsttruker der hochtemperaturemodikation von Wismut (III)-oxid (δ-Bi2O3). Z Anorg Allg Chem 318:176–189CrossRef
33.
go back to reference Willis BTM (1965) The anomalous behavior of the neutron reflections of fluorite. Acta Crystallogr 18:75–76CrossRef Willis BTM (1965) The anomalous behavior of the neutron reflections of fluorite. Acta Crystallogr 18:75–76CrossRef
34.
go back to reference Verkerk MJ, Burggraaf AJ (1981) High oxygen ion conduction in sintered oxides of Bi2O3-Ln2O3 system. Solid State Ionics 3(4):463–467CrossRef Verkerk MJ, Burggraaf AJ (1981) High oxygen ion conduction in sintered oxides of Bi2O3-Ln2O3 system. Solid State Ionics 3(4):463–467CrossRef
35.
go back to reference Sillén LG (1937) X-ray studies on bismuth trioxide. Ark Kemi Mineral Geol 12A:1–15 Sillén LG (1937) X-ray studies on bismuth trioxide. Ark Kemi Mineral Geol 12A:1–15
36.
go back to reference Zav”yalova AA, Imamov RM (1969) Cubic structure of δ-bismuth sesquioxide. Kristallograya 14:331–333 Zav”yalova AA, Imamov RM (1969) Cubic structure of δ-bismuth sesquioxide. Kristallograya 14:331–333
37.
go back to reference Medernach JW, Snyder RL (1978) Powder diffraction patterns and structure of the bismuth oxides. J Am Ceram Soc 61:494–497CrossRef Medernach JW, Snyder RL (1978) Powder diffraction patterns and structure of the bismuth oxides. J Am Ceram Soc 61:494–497CrossRef
38.
go back to reference Jacobs PWM, Macdonaill DA (1986) Computer simulation of bismuth oxide. Solid State Ionics 18–19:209–213CrossRef Jacobs PWM, Macdonaill DA (1986) Computer simulation of bismuth oxide. Solid State Ionics 18–19:209–213CrossRef
39.
go back to reference Harwig HA (1978) Structure of bismuthsesquioxide: the α, β, γ, and δ-phase. Z Anorg Allg Chem 444:151–166CrossRef Harwig HA (1978) Structure of bismuthsesquioxide: the α, β, γ, and δ-phase. Z Anorg Allg Chem 444:151–166CrossRef
40.
go back to reference Battle PD, Catlow RA, Drennan J, Murray AD (1983) The structural properties of the oxygen conducting δ phase of Bi2O3. J Phys C Solid State Phys 16:L561–L566CrossRef Battle PD, Catlow RA, Drennan J, Murray AD (1983) The structural properties of the oxygen conducting δ phase of Bi2O3. J Phys C Solid State Phys 16:L561–L566CrossRef
41.
go back to reference Yashima M, Ishimura D (2003) Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem Phys Lett 378:395–399CrossRef Yashima M, Ishimura D (2003) Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem Phys Lett 378:395–399CrossRef
42.
go back to reference Mohn CE, StØlen S, Stefan T, Norberg HS (2009) Oxide-ion disorder within the high temperature δ phase of Bi2O3. Phys Rev Lett 102:155502CrossRef Mohn CE, StØlen S, Stefan T, Norberg HS (2009) Oxide-ion disorder within the high temperature δ phase of Bi2O3. Phys Rev Lett 102:155502CrossRef
43.
go back to reference Iwahara H, Esaka T, Sato T, Takahashi T (1981) Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln=La-Yb). J Solid State Chem 39:173–180CrossRef Iwahara H, Esaka T, Sato T, Takahashi T (1981) Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln=La-Yb). J Solid State Chem 39:173–180CrossRef
44.
go back to reference Datta RK, Meehan JP (1971) The system Bi2O3-R2O3 (R=Y, Gd). Z Anorg Allg Chem 383:328–337CrossRef Datta RK, Meehan JP (1971) The system Bi2O3-R2O3 (R=Y, Gd). Z Anorg Allg Chem 383:328–337CrossRef
45.
go back to reference Takahashi T, Iwahara H (1978) Oxide ion conductors based on bismuth sesquioxide. Mater Res Bull 13:1447–1453CrossRef Takahashi T, Iwahara H (1978) Oxide ion conductors based on bismuth sesquioxide. Mater Res Bull 13:1447–1453CrossRef
46.
go back to reference Fung KZ, Virkar AV (1991) Phase-stability, phase-transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolytes containing aliovalent dopants. J Am Ceram Soc 74:1970–1980CrossRef Fung KZ, Virkar AV (1991) Phase-stability, phase-transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolytes containing aliovalent dopants. J Am Ceram Soc 74:1970–1980CrossRef
47.
go back to reference Fung KZ, Beak HD, Virkar AV (1992) Thermo-dynamic and kinetic considerations for Bi2O3-based electrolytes. Solid State Ionics 52:199–211CrossRef Fung KZ, Beak HD, Virkar AV (1992) Thermo-dynamic and kinetic considerations for Bi2O3-based electrolytes. Solid State Ionics 52:199–211CrossRef
48.
go back to reference Huang K, Feng M, Goodenough JB (1996) Bi2O3-Y2O3-CeO2 solid solution oxide-ion electrolyte. Solid State Ionics 89:17–24CrossRef Huang K, Feng M, Goodenough JB (1996) Bi2O3-Y2O3-CeO2 solid solution oxide-ion electrolyte. Solid State Ionics 89:17–24CrossRef
49.
go back to reference Verkerk MJ, Keizer K, Burggraaf AJ (1980) High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J Appl Electrochem 10:81–90CrossRef Verkerk MJ, Keizer K, Burggraaf AJ (1980) High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J Appl Electrochem 10:81–90CrossRef
50.
go back to reference Kruidhof H, Boumeester HJM, de Vries KJ, Gellings PJ, Burggraaf AJ (1992) Thermochemical stability and nonstoichiometry of erbia-stabilized bismuth oxide. Solid State Ionics 50:181–186CrossRef Kruidhof H, Boumeester HJM, de Vries KJ, Gellings PJ, Burggraaf AJ (1992) Thermochemical stability and nonstoichiometry of erbia-stabilized bismuth oxide. Solid State Ionics 50:181–186CrossRef
51.
go back to reference Watanabe A (2005) Phase relations of Bi2O3-rich Bi2O3-Er2O3 system: the appearance of a new stable orthorhombic phase (Bi2O3)0.72(Er2O3)0.28 against the known oxide-ion conductive hexagonal phase. Solid State Ionics 176:2423–2428CrossRef Watanabe A (2005) Phase relations of Bi2O3-rich Bi2O3-Er2O3 system: the appearance of a new stable orthorhombic phase (Bi2O3)0.72(Er2O3)0.28 against the known oxide-ion conductive hexagonal phase. Solid State Ionics 176:2423–2428CrossRef
52.
go back to reference Watanabe A, Sekita M (2005) Stabilized δ-Bi2O3 phase in the system Bi2O3-Er2O3−WO3 and its oxide-ion conduction. Solid State Ionics 176:2429–2433CrossRef Watanabe A, Sekita M (2005) Stabilized δ-Bi2O3 phase in the system Bi2O3-Er2O3−WO3 and its oxide-ion conduction. Solid State Ionics 176:2429–2433CrossRef
53.
go back to reference Ritter C, Radaelli PG, Lees MR, Barratt J, Balakrishnan G, Paul DM (1996) A new monoclinic perovskite allotype in Pr0.6Sr0.4MnO3. J Solid State Chem 127:276–282CrossRef Ritter C, Radaelli PG, Lees MR, Barratt J, Balakrishnan G, Paul DM (1996) A new monoclinic perovskite allotype in Pr0.6Sr0.4MnO3. J Solid State Chem 127:276–282CrossRef
54.
go back to reference Tofield BC, Scott WR (1974) Oxidative nonstoichiometry in perovskites, an experimental survey: the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J Solid State Chem 10:183–194CrossRef Tofield BC, Scott WR (1974) Oxidative nonstoichiometry in perovskites, an experimental survey: the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J Solid State Chem 10:183–194CrossRef
55.
go back to reference Van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, Zandbergen HW (1994) The defect chemistry of LaMnO3±δ : 2. Structural aspects of LaMnO3+δ . J Solid State Chem 110:100–105CrossRef Van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, Zandbergen HW (1994) The defect chemistry of LaMnOδ : 2. Structural aspects of LaMnO3+δ . J Solid State Chem 110:100–105CrossRef
56.
go back to reference Hassel BAV, Kawada T, Sakai N, Yokokawa H, Doldya M (1993) Oxygen permeation modelling of perovskites. Solid State Ionics 66:295–305CrossRef Hassel BAV, Kawada T, Sakai N, Yokokawa H, Doldya M (1993) Oxygen permeation modelling of perovskites. Solid State Ionics 66:295–305CrossRef
57.
go back to reference Fukunga O, Fujita T (1973) The relation between ionic radii and cell volumes in the perovskite compounds. J Solid State Chem 8:331–338CrossRef Fukunga O, Fujita T (1973) The relation between ionic radii and cell volumes in the perovskite compounds. J Solid State Chem 8:331–338CrossRef
58.
go back to reference Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite-type oxide as a new oxide ion conductor. J Am Chem Soc 116:3801–3803CrossRef Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite-type oxide as a new oxide ion conductor. J Am Chem Soc 116:3801–3803CrossRef
59.
go back to reference Feng M, Goodenough JB (1994) A superior oxide-ion electrolyte. Euro J Solid State Inorg Chem 31:663–672 Feng M, Goodenough JB (1994) A superior oxide-ion electrolyte. Euro J Solid State Inorg Chem 31:663–672
60.
go back to reference Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H (1999) Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122:1–15CrossRef Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H (1999) Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122:1–15CrossRef
61.
go back to reference Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93CrossRef Islam MS, Davies RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93CrossRef
62.
go back to reference Pradyot D, Peter M, Fritz A (2007) Structural studies of Sr- and Mg-doped LaGaO3. J Alloy Compd 438:232–237CrossRef Pradyot D, Peter M, Fritz A (2007) Structural studies of Sr- and Mg-doped LaGaO3. J Alloy Compd 438:232–237CrossRef
63.
go back to reference Kajitani M, Matsuda M, Hoshikawa A, Harjo S, Kamiyama T, Ishigaki T, Izumi F, Miyake M (2007) Doping effect on crystal structure and conduction property of fast oxide ion conductor LaGaO3-based perovskite. J Phys Chem Solids 68:758–764CrossRef Kajitani M, Matsuda M, Hoshikawa A, Harjo S, Kamiyama T, Ishigaki T, Izumi F, Miyake M (2007) Doping effect on crystal structure and conduction property of fast oxide ion conductor LaGaO3-based perovskite. J Phys Chem Solids 68:758–764CrossRef
64.
go back to reference Ishihara T, Akbay T, Furutani H, Takita Y (1998) Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics 113:585–591CrossRef Ishihara T, Akbay T, Furutani H, Takita Y (1998) Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics 113:585–591CrossRef
65.
go back to reference Trofimenko N, Ullmann H (1999) Transition metal doped lanthanum gallates. Solid State Ionics 118:215–227CrossRef Trofimenko N, Ullmann H (1999) Transition metal doped lanthanum gallates. Solid State Ionics 118:215–227CrossRef
66.
go back to reference Yamaji K, Negishi H, Horita T, Sakai N, Yokokawa H (2000) Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics 135:389–396CrossRef Yamaji K, Negishi H, Horita T, Sakai N, Yokokawa H (2000) Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics 135:389–396CrossRef
67.
go back to reference Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404:856–858CrossRef Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404:856–858CrossRef
68.
go back to reference Marrero-Lopez D, Canales-Vazquez J, Zhou WZ, Irvine JTS, Núñez P (2005) Structural studies on W6+ and Nd3+ substituted La2Mo2O9 materials. J Solid State Chem 179:278–288CrossRef Marrero-Lopez D, Canales-Vazquez J, Zhou WZ, Irvine JTS, Núñez P (2005) Structural studies on W6+ and Nd3+ substituted La2Mo2O9 materials. J Solid State Chem 179:278–288CrossRef
69.
go back to reference Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Lacorre PH (2001) Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, base on lanthanum molybdenumoxide La2Mo2O9. J Mater Chem 11:119–124CrossRef Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Lacorre PH (2001) Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, base on lanthanum molybdenumoxide La2Mo2O9. J Mater Chem 11:119–124CrossRef
70.
go back to reference Tsai DS, Hsieh MJ, Tseng JC, Lee HY (2004) Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9. J Eur Ceram Soc 25:481–487CrossRef Tsai DS, Hsieh MJ, Tseng JC, Lee HY (2004) Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9. J Eur Ceram Soc 25:481–487CrossRef
71.
go back to reference Jin TY, Rao MMV, Cheng CL, Tsai DS, Hung MH (2007) Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9. Solid State Ionics 178:367–374CrossRef Jin TY, Rao MMV, Cheng CL, Tsai DS, Hung MH (2007) Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9. Solid State Ionics 178:367–374CrossRef
72.
go back to reference Lu T, Steele BCH (1986) Electrical conductivity of polycrystalline BiVO4 samples having the scheelite structure. Solid State Ionics 21:339–342CrossRef Lu T, Steele BCH (1986) Electrical conductivity of polycrystalline BiVO4 samples having the scheelite structure. Solid State Ionics 21:339–342CrossRef
73.
go back to reference Abraham F, Debreuille-Gresse MF, Mairesse G, Nowogrocki G (1988) Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ionics 28:529–532CrossRef Abraham F, Debreuille-Gresse MF, Mairesse G, Nowogrocki G (1988) Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ionics 28:529–532CrossRef
74.
go back to reference Yan J, Greenblatt M (1995) Ionic conductivities of Bi4V2−x M x O11−x/2 (M=Ti, Zr, Sn, Pb). Solid State Ionics 81:225–233CrossRef Yan J, Greenblatt M (1995) Ionic conductivities of Bi4V2−x M x O11−x/2 (M=Ti, Zr, Sn, Pb). Solid State Ionics 81:225–233CrossRef
75.
go back to reference Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The bimevox series: a new family of high performance oxide ion conductors. Solid State Ionics 40–41:934–937CrossRef Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The bimevox series: a new family of high performance oxide ion conductors. Solid State Ionics 40–41:934–937CrossRef
76.
go back to reference Sansom JEH, Richings D, Slater PR (2001) A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics 139:205–210CrossRef Sansom JEH, Richings D, Slater PR (2001) A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics 139:205–210CrossRef
77.
go back to reference Palcut M, Knibbe R, Wiik K, Grande T (2011) Cation inter-diffusion between LaMnO3 and LaCoO3 materials. Solid State Ionics 202:6–13CrossRef Palcut M, Knibbe R, Wiik K, Grande T (2011) Cation inter-diffusion between LaMnO3 and LaCoO3 materials. Solid State Ionics 202:6–13CrossRef
78.
go back to reference Kubicek M, Rupp GM, Huber S, Penn A, Opitz AK, Bernardi J, Stoger-Pollach M, Hutter H, Fleig J (2014) Cation diffusion in La0.6Sr0.4CoO3−δ below 800 °C and its relevance for Sr segregation. Phys Chem Chem Phys 16:2715–2726CrossRef Kubicek M, Rupp GM, Huber S, Penn A, Opitz AK, Bernardi J, Stoger-Pollach M, Hutter H, Fleig J (2014) Cation diffusion in La0.6Sr0.4CoO3−δ below 800 °C and its relevance for Sr segregation. Phys Chem Chem Phys 16:2715–2726CrossRef
79.
go back to reference Harvey SP, Souza RAD, Martin M (2012) Diffusion of La and Mn in Ba0.5Sr0.5Co0.8Fe0.2O3-δ polycrystalline ceramics. Energ Environ Sci 5:5803–5813CrossRef Harvey SP, Souza RAD, Martin M (2012) Diffusion of La and Mn in Ba0.5Sr0.5Co0.8Fe0.2O3-δ polycrystalline ceramics. Energ Environ Sci 5:5803–5813CrossRef
80.
go back to reference Čebašek N, Haugsrud R, Norby T (2013) Determination of inter-diffusion coefficients for the A- and B-site in the A2BO4+δ (A = La, Nd and B = Ni, Cu) system. Solid State Ionics 231:74–80CrossRef Čebašek N, Haugsrud R, Norby T (2013) Determination of inter-diffusion coefficients for the A- and B-site in the A2BO4+δ (A = La, Nd and B = Ni, Cu) system. Solid State Ionics 231:74–80CrossRef
81.
go back to reference Kawamura K, Saiki A, Maruyama T, Nagato K (1995) Diffusion coefficient of yttrium ion in YCrO3. J Electrochem Soc 142:3073–3077CrossRef Kawamura K, Saiki A, Maruyama T, Nagato K (1995) Diffusion coefficient of yttrium ion in YCrO3. J Electrochem Soc 142:3073–3077CrossRef
82.
go back to reference Akashi T, Nanko M, Maruyama T, Shiraishi Y, Tanabe J (1998) Solid-State reaction kinetics of LaCrO3 from the oxides and determination of La3+ diffusion coefficient. J Electrochem Soc 145:2090–2094CrossRef Akashi T, Nanko M, Maruyama T, Shiraishi Y, Tanabe J (1998) Solid-State reaction kinetics of LaCrO3 from the oxides and determination of La3+ diffusion coefficient. J Electrochem Soc 145:2090–2094CrossRef
83.
go back to reference Suzuki AM, Yasuda A, Ozawa K (2008) Cr and Al diffusion in chromite spinel: experimental determination and its implication for diffusion creep. Phys Chem Miner 35:433–445CrossRef Suzuki AM, Yasuda A, Ozawa K (2008) Cr and Al diffusion in chromite spinel: experimental determination and its implication for diffusion creep. Phys Chem Miner 35:433–445CrossRef
84.
go back to reference Eriksson A, Einarsrud MA, Grande T (2011) Materials science aspects relevant for high-temperature electrochemistry. In: Kharton VV (ed) Solid state electrochemistry II: electrodes interfaces and ceramic membranes. Wiley, Weinheim, pp 415–466CrossRef Eriksson A, Einarsrud MA, Grande T (2011) Materials science aspects relevant for high-temperature electrochemistry. In: Kharton VV (ed) Solid state electrochemistry II: electrodes interfaces and ceramic membranes. Wiley, Weinheim, pp 415–466CrossRef
85.
go back to reference Anderson LL, Armstrong PA, Broekhuis RR, Carolan MF, Chen J, Hutcheon MD, Lewinsohn CA, Miller CF, Repasky JM, Taylor DM, Woods CM (2016) Advances in ion transport membrane technology for oxygen and syngas production. Solid State Ionics 288:331–337CrossRef Anderson LL, Armstrong PA, Broekhuis RR, Carolan MF, Chen J, Hutcheon MD, Lewinsohn CA, Miller CF, Repasky JM, Taylor DM, Woods CM (2016) Advances in ion transport membrane technology for oxygen and syngas production. Solid State Ionics 288:331–337CrossRef
Metadata
Title
Ionic Conductors and Aspects Related to High Temperature
Authors
Xuefeng Zhu
Weishen Yang
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53534-9_3