Skip to main content
Top
Published in: Wireless Personal Communications 1/2022

17-11-2021

IoT for Health Monitoring System Based on Machine Learning Algorithm

Authors: S. Balakrishnan, K. Suresh Kumar, L. Ramanathan, S. K. Muthusundar

Published in: Wireless Personal Communications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Internet of things (IoT) is one of the futuristic and upcoming technologies which have led to the concept of automation in many daily chores. IoT has placed its fame nearly in all possible platforms and the main idea is to enhance this technology in the current healthcare system, for the purpose of automatic monitoring of hospitals and patient’s health by spreading positive vibes to the vision of IoT. With the support of certain technologies such as Radio Frequency Identification (RFID), Brainsense headband, Wireless Sensor Network and smart mobile, by keeping the IoT as its connecting platform, a Smart E-Healthcare System is framed. A low power wireless personal area connection helps in incorporating these technologies together through a Constrained Application Protocol/IPv6. To track the state of the patient, Smart Healthcare Sensor (SHS) and RFID are used that are attached to the person’s wrist bands automatically by using electromagnetic fields. Each tag held by the person has a unique ID and it contains information that is electronically stored in a separate cloud environment. Based on the various information sensed by the SHS sensors, required prescription is given to the victim in the absence of doctors. This technology represents a significant step in the development of health care sectors. In this paper, we are proposing pro prediction algorithm for detecting the prescription for the patient.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Walsh, S., Linton, J., Grace, R., Marshall, & Knutti, S. (2000). MEMS and MOEMS technology and applications. SPIE—The International Society for Optical Engineering. Walsh, S., Linton, J., Grace, R., Marshall, & Knutti, S. (2000). MEMS and MOEMS technology and applications. SPIE—The International Society for Optical Engineering.
2.
go back to reference Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2014). A cloud-assisted random linear network coding medium access control protocol for healthcare applications. Sensors, 14, 4806–4830.CrossRef Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2014). A cloud-assisted random linear network coding medium access control protocol for healthcare applications. Sensors, 14, 4806–4830.CrossRef
3.
go back to reference Balakrishnan, S., Aravind, K., & Jebaraj, R. A. (2018). A novel approach for tumor image set classification based on multi-manifold deep metric learning. International Journal of Pure and Applied Mathematics, 119(10c), 553–562. Balakrishnan, S., Aravind, K., & Jebaraj, R. A. (2018). A novel approach for tumor image set classification based on multi-manifold deep metric learning. International Journal of Pure and Applied Mathematics, 119(10c), 553–562.
4.
go back to reference Tennina, S., Santos, M., Mesodiakaki, A., Mekikis, P.-V., Kartsakli, E., Antonopoulos, A., Di Renzo, M., Stavridis, A., Graziosi, F., Alonso, L., & Verikoukis, C. (2016). WSN4QoL: WSNs for remote patient monitoring in e-Health applications. 2016 IEEE International Conference on Communications (ICC). IEEE. https://doi.org/10.1109/ICC.2016.7511597CrossRef Tennina, S., Santos, M., Mesodiakaki, A., Mekikis, P.-V., Kartsakli, E., Antonopoulos, A., Di Renzo, M., Stavridis, A., Graziosi, F., Alonso, L., & Verikoukis, C. (2016). WSN4QoL: WSNs for remote patient monitoring in e-Health applications. 2016 IEEE International Conference on Communications (ICC). IEEE. https://​doi.​org/​10.​1109/​ICC.​2016.​7511597CrossRef
5.
go back to reference Bazzani, M., Conzon, D., Scalera, A., Spirito, M., & Trainito, C. (2012). Enabling the IoT paradigm in e-health solutions through the VIRTUS middleware. IEEE 11th international conference on trust, security and privacy in computing and communications (TrustCom) (pp. 1954–1959). IEEE. Bazzani, M., Conzon, D., Scalera, A., Spirito, M., & Trainito, C. (2012). Enabling the IoT paradigm in e-health solutions through the VIRTUS middleware. IEEE 11th international conference on trust, security and privacy in computing and communications (TrustCom) (pp. 1954–1959). IEEE.
6.
go back to reference Benharref, A., & Serhani, M. (2014). Novel cloud and SOA-based framework for e-health monitoring using wireless biosensors. IEEE Journal of Biomedical and Health Informatics, 18(1), 46–55.CrossRef Benharref, A., & Serhani, M. (2014). Novel cloud and SOA-based framework for e-health monitoring using wireless biosensors. IEEE Journal of Biomedical and Health Informatics, 18(1), 46–55.CrossRef
7.
go back to reference Milenkovi, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 29(1314), 2521–2533.CrossRef Milenkovi, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 29(1314), 2521–2533.CrossRef
8.
go back to reference Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9(3), 337–344.CrossRef Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9(3), 337–344.CrossRef
10.
go back to reference Bui, N., & Zorzi, M. (2011). Health care applications: A solution based on the internet of things. Proceedings of the 4th international symposium on applied sciences in biomedical and communication technologies. ISABEL’11. Bui, N., & Zorzi, M. (2011). Health care applications: A solution based on the internet of things. Proceedings of the 4th international symposium on applied sciences in biomedical and communication technologies. ISABEL’11.
11.
go back to reference Olorode, O., & Nourani, M. (2014). Reducing leakage power in wearable medical devices using memory nap controller. 2014 IEEE dallas circuits and systems conference (DCAS) (pp. 1–4). IEEE. Olorode, O., & Nourani, M. (2014). Reducing leakage power in wearable medical devices using memory nap controller. 2014 IEEE dallas circuits and systems conference (DCAS) (pp. 1–4). IEEE.
15.
go back to reference Jebaraj Ratnakumar, A., & Balakrishnan, S. (2018). Machine learning based grape leaf disease detection. Journal of Advanced Research in Dynamic & Control Systems, 10, 775–780. Jebaraj Ratnakumar, A., & Balakrishnan, S. (2018). Machine learning based grape leaf disease detection. Journal of Advanced Research in Dynamic & Control Systems, 10, 775–780.
16.
go back to reference Rallapalli, H., & Bethelli, P. (2017). IOT based patient monitoring system. International Journal of Computing, Communications & Instrumentation Engineering (IJCCIE), 4(1), 115–118. Rallapalli, H., & Bethelli, P. (2017). IOT based patient monitoring system. International Journal of Computing, Communications & Instrumentation Engineering (IJCCIE), 4(1), 115–118.
17.
go back to reference Fellini, C., Merenda, M., & Della Corte, F. G. (2012). Battery-less smart RFID tag with sensor capabilities, RFID-technologies and applications (RFID-TA). 2012 IEEE international conference on RFID-technologies and applications (RFID-TA) (pp. 160–164). IEEE. Fellini, C., Merenda, M., & Della Corte, F. G. (2012). Battery-less smart RFID tag with sensor capabilities, RFID-technologies and applications (RFID-TA). 2012 IEEE international conference on RFID-technologies and applications (RFID-TA) (pp. 160–164). IEEE.
18.
go back to reference Spanò, E., Di Pascoli, S., & Iannaccone, G. (2016). Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sensors Journal, 16(13), 5452–5462.CrossRef Spanò, E., Di Pascoli, S., & Iannaccone, G. (2016). Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sensors Journal, 16(13), 5452–5462.CrossRef
19.
go back to reference Hossein, H. R. (2015). SPHMS: Smart patient m-healthcare monitoring system with NFC and IOT. International Journal of Computer Applications Technology and Research, 4(12), 956–959.CrossRef Hossein, H. R. (2015). SPHMS: Smart patient m-healthcare monitoring system with NFC and IOT. International Journal of Computer Applications Technology and Research, 4(12), 956–959.CrossRef
20.
go back to reference Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., Kantarci, B., & Andreescu, S. (2015). Health monitoring and management using internet-of-things (IoT) sensing with cloud-based processing: Opportunities and challenges. 2015 IEEE international conference on services computing (pp. 285–292). IEEE. https://doi.org/10.1109/SCC.2015.47CrossRef Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., Kantarci, B., & Andreescu, S. (2015). Health monitoring and management using internet-of-things (IoT) sensing with cloud-based processing: Opportunities and challenges. 2015 IEEE international conference on services computing (pp. 285–292). IEEE. https://​doi.​org/​10.​1109/​SCC.​2015.​47CrossRef
21.
go back to reference Pardeshi, V., Sagar, S., Murmurwar, S., & Hage, P. (2017). Health monitoring systems using IoT and raspberry Pi—A review. 2017 international conference on innovative mechanisms for industry applications (ICIMIA 2017) (pp. 134–137). IEEE.CrossRef Pardeshi, V., Sagar, S., Murmurwar, S., & Hage, P. (2017). Health monitoring systems using IoT and raspberry Pi—A review. 2017 international conference on innovative mechanisms for industry applications (ICIMIA 2017) (pp. 134–137). IEEE.CrossRef
Metadata
Title
IoT for Health Monitoring System Based on Machine Learning Algorithm
Authors
S. Balakrishnan
K. Suresh Kumar
L. Ramanathan
S. K. Muthusundar
Publication date
17-11-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09335-w

Other articles of this Issue 1/2022

Wireless Personal Communications 1/2022 Go to the issue