Skip to main content
Top

2025 | OriginalPaper | Chapter

“Is this Site Legit?”: LLMs for Scam Website Detection

Authors : Yuan-Chen Chang, Esma Aïmeur

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The proliferation of online scams has become a pressing concern in the digital age, exacerbated by the rise of Artificial Intelligence. Malicious actors now employ sophisticated techniques to create convincing fraudulent schemes, targeting vulnerable individuals through personalized approaches on social media. This paper addresses the challenges of scam website detection by leveraging the capabilities of Large Language Models (LLMs). While other papers have focused on fine-tuning LLMs, our research investigates if readily available LLMs can be directly applied to scam website detection. This paper explores text-based and screenshot-based methods, utilizing five prominent LLMs to analyze website content. The findings indicate that existing LLMs are effective in identifying scam websites and providing rapid, expert responses for assessing website legitimacy. A novel categorization of criteria is proposed based on the LLMs’ decision-making processes. By comparing these models’ performances, this paper aims to develop a more efficient and accessible solution for identifying fraudulent websites. This work contributes to enhancing cybersecurity measures, potentially reducing online scams and increasing user trust in digital interactions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Boumber, D., Tuck, B.E., Verma, R.M., Qachfar, F.Z.: LLMs for explainable few-shot deception detection. In: Proceedings of the 10th ACM International Workshop on Security and Privacy Analytics, pp. 37–47. IWSPA ’24, Association for Computing Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3643651.3659898 Boumber, D., Tuck, B.E., Verma, R.M., Qachfar, F.Z.: LLMs for explainable few-shot deception detection. In: Proceedings of the 10th ACM International Workshop on Security and Privacy Analytics, pp. 37–47. IWSPA ’24, Association for Computing Machinery, New York, NY, USA (2024). https://​doi.​org/​10.​1145/​3643651.​3659898
4.
go back to reference Button, M., Cross, C.: Cyber Frauds, Scams and Their Victims. Routledge, Taylor & Francis Group, London; New York (2017)CrossRef Button, M., Cross, C.: Cyber Frauds, Scams and Their Victims. Routledge, Taylor & Francis Group, London; New York (2017)CrossRef
8.
go back to reference Gopali, S., Namin, A.S., Abri, F., Jones, K.S.: The performance of sequential deep learning models in detecting phishing websites using contextual features of URLs. In: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, pp. 1064–1066. ACM, Avila Spain (Apr 2024). https://doi.org/10.1145/3605098.3636164 Gopali, S., Namin, A.S., Abri, F., Jones, K.S.: The performance of sequential deep learning models in detecting phishing websites using contextual features of URLs. In: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, pp. 1064–1066. ACM, Avila Spain (Apr 2024). https://​doi.​org/​10.​1145/​3605098.​3636164
9.
go back to reference Gressel, G., Pankajakshan, R., Mirsky, Y.: Discussion paper: Exploiting LLMs for scam automation: a looming threat. In: Proceedings of the 3rd ACM Workshop on the Security Implications of Deepfakes and Cheapfakes, pp. 20–24. ACM, Singapore Singapore (Jul 2024). https://doi.org/10.1145/3660354.3660356 Gressel, G., Pankajakshan, R., Mirsky, Y.: Discussion paper: Exploiting LLMs for scam automation: a looming threat. In: Proceedings of the 3rd ACM Workshop on the Security Implications of Deepfakes and Cheapfakes, pp. 20–24. ACM, Singapore Singapore (Jul 2024). https://​doi.​org/​10.​1145/​3660354.​3660356
14.
go back to reference Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., Joosen, W.: Tranco: a research-oriented top sites ranking hardened against manipulation. In: Proceedings of the 26th Annual Network and Distributed System Security Symposium. NDSS 2019 (Feb 2019). https://doi.org/10.14722/ndss.2019.23386 Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., Joosen, W.: Tranco: a research-oriented top sites ranking hardened against manipulation. In: Proceedings of the 26th Annual Network and Distributed System Security Symposium. NDSS 2019 (Feb 2019). https://​doi.​org/​10.​14722/​ndss.​2019.​23386
Metadata
Title
“Is this Site Legit?”: LLMs for Scam Website Detection
Authors
Yuan-Chen Chang
Esma Aïmeur
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_17

Premium Partner