Skip to main content
Top

2024 | OriginalPaper | Chapter

Iterative Calibration of Implied Volatility for European Options: A Computational Approach

Authors : Teodora Klimenko, Velizar Pavlov

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Implied volatility is a crucial variable for options trading as it helps determine profitability. It reflects the future movement of the underlying asset’s price and predicts the extent of potential price fluctuation, which can be used to determine if options are likely to be profitable before expiry. The main focus of this research paper is on an iterative numerical method used to calculate the implied volatility of European options. This value is a crucial component in determining the option price. The Black–Scholes model, which assumes that the underlying asset’s volatility is constant and known, does not reflect the reality of the market. Empirical and theoretical studies have shown that the implied volatility of the underlying asset prices follows a persistent smile pattern, indicating a clear relationship between the option strike price and its implied volatility. Moreover, the volatility term structure reflects the relationship between the implied volatility and the time to option expiration, which is not constant. The research aims to provide a better understanding of the complex dynamics of implied volatility and its impact on options trading profitability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Seydel, R.U.: Tools for Computational Finance. Springer-Verlag London Limited (2012) Seydel, R.U.: Tools for Computational Finance. Springer-Verlag London Limited (2012)
2.
go back to reference Amin, K.I., Morton, A.J.: Implied volatility functions in arbitrage-free term structure models. Journal of Financial Economics, vol: 35 (1994) Amin, K.I., Morton, A.J.: Implied volatility functions in arbitrage-free term structure models. Journal of Financial Economics, vol: 35 (1994)
3.
go back to reference Barone-Adesi, G., Brown, K.C., Harlow, W.V.: On the use of implied stock volatilities in the prediction of successful corporate takeovers. Advances in Futures and Options Research (1994) Barone-Adesi, G., Brown, K.C., Harlow, W.V.: On the use of implied stock volatilities in the prediction of successful corporate takeovers. Advances in Futures and Options Research (1994)
4.
go back to reference Teng, L.: Lecture notes on Computational Finance 1 (2021) Teng, L.: Lecture notes on Computational Finance 1 (2021)
5.
go back to reference Günther, M., Jüngel, A.: Finanzderivative mit MATLAB. Vieweg+Teubner (2010) Günther, M., Jüngel, A.: Finanzderivative mit MATLAB. Vieweg+Teubner (2010)
6.
go back to reference Hirsa, A.: Computational Methods in Finance. CRC Press (2013) Hirsa, A.: Computational Methods in Finance. CRC Press (2013)
7.
go back to reference Brenner, M., Subrahmanyam, M.G.: A simple formula to compute implied volatility, Financ. Anal. J. 44, 80–83 (1998) Brenner, M., Subrahmanyam, M.G.: A simple formula to compute implied volatility, Financ. Anal. J. 44, 80–83 (1998)
8.
go back to reference Bharadia, M.A.J., Christofides, N., Salkin, G.R.: Computing the Black-Scholes implied volatility: generalization of a simple formula, Adv. Futures Options Res. 8, 15–30 (1995) Bharadia, M.A.J., Christofides, N., Salkin, G.R.: Computing the Black-Scholes implied volatility: generalization of a simple formula, Adv. Futures Options Res. 8, 15–30 (1995)
9.
go back to reference Corrado, C.J., Miller, T.W.: A note on a simple, accurate formula to compute implied standard deviations, J. Bank. Fin. 20 (3), 595–603 (1996) Corrado, C.J., Miller, T.W.: A note on a simple, accurate formula to compute implied standard deviations, J. Bank. Fin. 20 (3), 595–603 (1996)
10.
go back to reference Li, S.: A new formula for computing implied volatility, Appl. Math. Comput. 170 (1), 611–625 (2005) Li, S.: A new formula for computing implied volatility, Appl. Math. Comput. 170 (1), 611–625 (2005)
11.
go back to reference Stefanica, D., Radoicic, R.: An explicit implied volatility formula, Int. J. Theoret. Appl. Fin. 20(7) (2017) Stefanica, D., Radoicic, R.: An explicit implied volatility formula, Int. J. Theoret. Appl. Fin. 20(7) (2017)
12.
go back to reference Orlando, G., Taglialatela, G.: A review on implied volatility calculation, J. Comput. Appl. Math. 320, 202-220 (2017) Orlando, G., Taglialatela, G.: A review on implied volatility calculation, J. Comput. Appl. Math. 320, 202-220 (2017)
13.
go back to reference Bouchouev, I., Isakov, V.: The inverse problem of option pricing, Inverse Problems 13(5) L11, (1997) Bouchouev, I., Isakov, V.: The inverse problem of option pricing, Inverse Problems 13(5) L11, (1997)
14.
go back to reference Jiang, L.-S., Youshan, T.: Identifying the volatility of underlying assets from option prices, Inverse Problems 17(1) 137, (2001) Jiang, L.-S., Youshan, T.: Identifying the volatility of underlying assets from option prices, Inverse Problems 17(1) 137, (2001)
15.
go back to reference Deng, Z.-C., Yu, J.-N., Yang, L.: An inverse problem of determining the implied volatility in option pricing, Journal of Mathematical Analysis and Applications 340(1), 16-31 (2008) Deng, Z.-C., Yu, J.-N., Yang, L.: An inverse problem of determining the implied volatility in option pricing, Journal of Mathematical Analysis and Applications 340(1), 16-31 (2008)
16.
go back to reference Wang, S.-L., Yang, Y.-F., Zeng, Y.: The adjoint method for the inverse problem of option pricing, Mathematical Problems in Engineering Volume 2014, Article ID 314104, (2014) Wang, S.-L., Yang, Y.-F., Zeng, Y.: The adjoint method for the inverse problem of option pricing, Mathematical Problems in Engineering Volume 2014, Article ID 314104, (2014)
17.
go back to reference Deng, Z., Hon, Y., Isakov, V.: Recovery of time-dependent volatility in option pricing model, Inverse Problems 32(11) 115010, (2016) Deng, Z., Hon, Y., Isakov, V.: Recovery of time-dependent volatility in option pricing model, Inverse Problems 32(11) 115010, (2016)
18.
go back to reference Georgiev, S.G., Vulkov, L.G.: Computational recovery of time-dependent volatility from integral observations in option pricing, Journal of Computational Science, 39, 101054 (2020) Georgiev, S.G., Vulkov, L.G.: Computational recovery of time-dependent volatility from integral observations in option pricing, Journal of Computational Science, 39, 101054 (2020)
19.
go back to reference Georgiev, S.: Numerical and analytical computation of the implied volatility from option price measurements under regime–switching, AIP Publishing 2172, 070007 (2019) Georgiev, S.: Numerical and analytical computation of the implied volatility from option price measurements under regime–switching, AIP Publishing 2172, 070007 (2019)
20.
go back to reference Nabubie, B., Wang, S.: Numerical techniques for determining implied volatility in option pricing, Journal of Computational and Applied Mathematics, 422, 114913 (2023) Nabubie, B., Wang, S.: Numerical techniques for determining implied volatility in option pricing, Journal of Computational and Applied Mathematics, 422, 114913 (2023)
21.
go back to reference Georgiev, S., Vulkov, L.: Fast reconstruction of time-dependent market volatility for European options, Computational and Applied Mathematics, 40, Article number: 30 (2021) Georgiev, S., Vulkov, L.: Fast reconstruction of time-dependent market volatility for European options, Computational and Applied Mathematics, 40, Article number: 30 (2021)
22.
go back to reference Georgiev, S., Vulkov, L.: Computation of the unknown volatility from integral option price observations in jump–diffusion models, Mathematics and Computers in Simulation, 188, 591-608, (2021) Georgiev, S., Vulkov, L.: Computation of the unknown volatility from integral option price observations in jump–diffusion models, Mathematics and Computers in Simulation, 188, 591-608, (2021)
23.
go back to reference Pavlov, V., Klimenko, T.: Simulating Stochastic Differential Equations in Option Pricing, New Trends in the Applications of Differential Equations in Sciences, SPRINGER, 412, 317-329 (2023) Pavlov, V., Klimenko, T.: Simulating Stochastic Differential Equations in Option Pricing, New Trends in the Applications of Differential Equations in Sciences, SPRINGER, 412, 317-329 (2023)
Metadata
Title
Iterative Calibration of Implied Volatility for European Options: A Computational Approach
Authors
Teodora Klimenko
Velizar Pavlov
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_27

Premium Partner