Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Joining of Graphene by Particle Beam Irradiation and Its Properties

Author : Xin Wu

Published in: Influence of Particle Beam Irradiation on the Structure and Properties of Graphene

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene joining can be used to control the shape and area of the original graphene, and obtain the graphene based microelectronic component. In this chapter, the method of particle beam (laser and ion beam) irradiation method was proposed to join graphene. The ion and laser beam irradiation were experimentally proved to be able to join two overlapped graphene. The different mechanisms by these two types of particle beams were discovered. It was found that there were always defects in the butt joint, which easily raise concentration of stress during stretch, and these defects were determined by the relative deflection angle of two sheets. The relationship between the mechanical properties and the irradiated ion dose, energy and type was discovered, and it was proposed that the electronic transport properties of the butt joint were heavily blocked by the difference of individual orbital energy and localized state induced by defects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ye X, Huang T, Lin Z et al (2013) Lap joining of graphene flakes by current-assisted CO2 laser irradiation. Carbon 61:329–335CrossRef Ye X, Huang T, Lin Z et al (2013) Lap joining of graphene flakes by current-assisted CO2 laser irradiation. Carbon 61:329–335CrossRef
2.
go back to reference Havener RW, Zhuang H, Brown L et al (2012) Angle resolved Raman imaging of inter layer rotations and interactions in twisted bilayer graphene. Nano Lett 12:3162CrossRef Havener RW, Zhuang H, Brown L et al (2012) Angle resolved Raman imaging of inter layer rotations and interactions in twisted bilayer graphene. Nano Lett 12:3162CrossRef
3.
go back to reference Kim K, Coh S, Tan LZ et al (2012) Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys Rev Lett 108:246103CrossRef Kim K, Coh S, Tan LZ et al (2012) Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys Rev Lett 108:246103CrossRef
4.
go back to reference Wu X, Zhao HY, Pei JY, Yan D (2017) Joining of graphene flakes by low energy N ion beam irradiation. Appl Phys Lett 110:133102CrossRef Wu X, Zhao HY, Pei JY, Yan D (2017) Joining of graphene flakes by low energy N ion beam irradiation. Appl Phys Lett 110:133102CrossRef
5.
go back to reference Lin YC, Lu CC, Yeh CH et al (2012) Graphene annealing: how clean can it be? Nano Lett 12:414–419CrossRef Lin YC, Lu CC, Yeh CH et al (2012) Graphene annealing: how clean can it be? Nano Lett 12:414–419CrossRef
6.
go back to reference Qi Z, Daniels C, Hong SJ et al (2015) Electronic transport of recrystallized freestanding graphene nanoribbons. Nano Lett 9:3510 Qi Z, Daniels C, Hong SJ et al (2015) Electronic transport of recrystallized freestanding graphene nanoribbons. Nano Lett 9:3510
7.
go back to reference Terrones M, Banhart F, Grobert N et al (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505CrossRef Terrones M, Banhart F, Grobert N et al (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505CrossRef
8.
go back to reference Krasheninnkov AV, Nordlund K, Keinonen J (2002) Ion-irradiaiton-induced welding of carbon nanotubes. Phys Rev B 66:245403CrossRef Krasheninnkov AV, Nordlund K, Keinonen J (2002) Ion-irradiaiton-induced welding of carbon nanotubes. Phys Rev B 66:245403CrossRef
9.
go back to reference Li Y, Li B, Zhang H (2009) The computational design of junctions between carbon nanotubes and graphene nanoribbons. Nanotechnology 20:225202CrossRef Li Y, Li B, Zhang H (2009) The computational design of junctions between carbon nanotubes and graphene nanoribbons. Nanotechnology 20:225202CrossRef
10.
go back to reference Zou R, Zhang Z, Xu K (2012) A method for joining individual graphene sheets. Carbon 50:4965–4972CrossRef Zou R, Zhang Z, Xu K (2012) A method for joining individual graphene sheets. Carbon 50:4965–4972CrossRef
11.
go back to reference Wu X, Zhao HY, Zhong ML, Murakawa H, Tsukamoto M (2013) The formation of molecular junctions between graphene sheets. Mater Trans 54:940–946CrossRef Wu X, Zhao HY, Zhong ML, Murakawa H, Tsukamoto M (2013) The formation of molecular junctions between graphene sheets. Mater Trans 54:940–946CrossRef
12.
go back to reference Bao W, Miao F, Chen Z et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotech 4:562–566CrossRef Bao W, Miao F, Chen Z et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotech 4:562–566CrossRef
13.
go back to reference Zakharchenko KV, Katsnelson MI, Fasolino A (2009) Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys Rev Lett 102:046808CrossRef Zakharchenko KV, Katsnelson MI, Fasolino A (2009) Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys Rev Lett 102:046808CrossRef
14.
go back to reference Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef
15.
go back to reference Wu X, Zhao HY, Zhong ML, Murakawa H, Tsukamoto M (2014) Molecular dynamics simulation of graphene sheets joining under ion beam irradiation. Carbon 66:31–38CrossRef Wu X, Zhao HY, Zhong ML, Murakawa H, Tsukamoto M (2014) Molecular dynamics simulation of graphene sheets joining under ion beam irradiation. Carbon 66:31–38CrossRef
16.
go back to reference Åhlgren E, Kotakoski J, Krasheninnikov A (2011) Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys Rev B 83:115424CrossRef Åhlgren E, Kotakoski J, Krasheninnikov A (2011) Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys Rev B 83:115424CrossRef
17.
go back to reference Kotakoski J, Jin CH, Lehtinen O et al (2010) Electron knock-on damage in hexagonal boron nitride monolayers. Phys Rev B 82:113404CrossRef Kotakoski J, Jin CH, Lehtinen O et al (2010) Electron knock-on damage in hexagonal boron nitride monolayers. Phys Rev B 82:113404CrossRef
18.
go back to reference Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62:1181–1221CrossRef Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62:1181–1221CrossRef
19.
go back to reference Wu X, Zhao HY, Murakawa H (2014) The joining of graphene sheets under Ar ion beam irradiation. J Nanosci Nanotechnol 14:5697–5702CrossRef Wu X, Zhao HY, Murakawa H (2014) The joining of graphene sheets under Ar ion beam irradiation. J Nanosci Nanotechnol 14:5697–5702CrossRef
20.
go back to reference Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef
21.
go back to reference Biel B, Blasé X, Triozon F et al (2009) anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett 102:096803CrossRef Biel B, Blasé X, Triozon F et al (2009) anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett 102:096803CrossRef
22.
go back to reference Topsakal M, Bagci V, Ciraci S (2010) Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys Rev B 81:205437CrossRef Topsakal M, Bagci V, Ciraci S (2010) Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys Rev B 81:205437CrossRef
Metadata
Title
Joining of Graphene by Particle Beam Irradiation and Its Properties
Author
Xin Wu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6457-9_5