Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

Joint Motion Estimation and Segmentation from Undersampled Cardiac MR Image

Authors : Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

Accelerating the acquisition of magnetic resonance imaging (MRI) is a challenging problem, and many works have been proposed to reconstruct images from undersampled k-space data. However, if the main purpose is to extract certain quantitative measures from the images, perfect reconstructions may not always be necessary as long as the images enable the means of extracting the clinically relevant measures. In this paper, we work on jointly predicting cardiac motion estimation and segmentation directly from undersampled data, which are two important steps in quantitatively assessing cardiac function and diagnosing cardiovascular diseases. In particular, a unified model consisting of both motion estimation branch and segmentation branch is learned by optimising the two tasks simultaneously. Additional corresponding fully-sampled images are incorporated into the network as a parallel sub-network to enhance and guide the learning during the training process. Experimental results using cardiac MR images from 220 subjects show that the proposed model is robust to undersampled data and is capable of predicting results that are close to that from fully-sampled ones, while bypassing the usual image reconstruction stage.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
https://github.com/BioMedIA/MIRTK.
 
Literature
1.
go back to reference Bai, W., Sinclair, M., Tarroni, G., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. (2018) Bai, W., Sinclair, M., Tarroni, G., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. (2018)
3.
go back to reference Caballero, J., Ledig, C., Aitken, A., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: CVPR (2017) Caballero, J., Ledig, C., Aitken, A., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: CVPR (2017)
4.
go back to reference Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: SegFlow: Joint learning for video object segmentation and optical flow. In: ICCV, pp. 686–695 (2017) Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: SegFlow: Joint learning for video object segmentation and optical flow. In: ICCV, pp. 686–695 (2017)
6.
7.
go back to reference Qin, C., Schlemper, J., Caballero, J., Price, A., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. arXiv preprint arXiv:​1712.​01751 (2017) Qin, C., Schlemper, J., Caballero, J., Price, A., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. arXiv preprint arXiv:​1712.​01751 (2017)
8.
go back to reference Rueckert, D., Sonoda, L.I., Hayes, C.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999) CrossRef Rueckert, D., Sonoda, L.I., Hayes, C.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999) CrossRef
9.
go back to reference Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018) CrossRef Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018) CrossRef
10.
go back to reference Schlemper, J., Oktay, O., Bai, W., et al.: Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In: MICCAI (2018) Schlemper, J., Oktay, O., Bai, W., et al.: Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In: MICCAI (2018)
11.
go back to reference Shi, W., Zhuang, X., Wang, H.: A comprehensive cardiac motion estimation framework using both untagged and 3-D tagged MR images based on nonrigid registration. IEEE Trans. Med. Imaging 31(6), 1263–1275 (2012) CrossRef Shi, W., Zhuang, X., Wang, H.: A comprehensive cardiac motion estimation framework using both untagged and 3-D tagged MR images based on nonrigid registration. IEEE Trans. Med. Imaging 31(6), 1263–1275 (2012) CrossRef
12.
go back to reference Tobon-Gomez, C., De Craene, M., Mcleod, K.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med. Image Anal. 17(6), 632–648 (2013) CrossRef Tobon-Gomez, C., De Craene, M., Mcleod, K.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med. Image Anal. 17(6), 632–648 (2013) CrossRef
13.
go back to reference Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: CVPR, pp. 3899–3908 (2016) Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: CVPR, pp. 3899–3908 (2016)
Metadata
Title
Joint Motion Estimation and Segmentation from Undersampled Cardiac MR Image
Authors
Chen Qin
Wenjia Bai
Jo Schlemper
Steffen E. Petersen
Stefan K. Piechnik
Stefan Neubauer
Daniel Rueckert
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_7

Premium Partner