Skip to main content
Top
Published in: Wireless Networks 8/2020

25-07-2020

Joint of full-duplex relay, non-linear energy harvesting and multiple access in performance improvement of cell-edge user in heterogeneous networks

Authors: Dinh-Thuan Do, Chi-Bao Le, Anh-Tu Le

Published in: Wireless Networks | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To serve massive connections in heterogeneous networks with respect to higher energy efficiency, we focus on new paradigm in order to achieve multiple access and performance improvement at cell-edge area. The power domain based non-orthogonal multiple access is introduced to address such problem. In particular, this paper studies a self-energy relay together with full-duplex scheme to implement cooperative power domain based non-orthogonal multiple access in small-cell system of the heterogeneous networks. In such small-cell network, a nearby user can be employed as a decode-and-forward with self-energy recycling protocol to assist a far power domain based non-orthogonal multiple access user (cell-edge user). The relay harvests energy from dedicated energy signal sent by a base station, while it still reuses energy from loop self-interference signal. To characterize the performance of the proposed system with respect to where meets weak signal condition, numerous expressions of exact outage probability for far power domain based non-orthogonal multiple access user is derived. Several practical scenarios are performed in three different schemes related to how energy harvesting architecture can be achieved. Based on analytical results, the optimal throughput achieved by the cell-edge user in small-cell network can be observed. Numerical results are presented to validate the accuracy of the derived results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.CrossRef Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.CrossRef
2.
go back to reference Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proceedings of the IEEE, 105(12), 2347–2381.CrossRef Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proceedings of the IEEE, 105(12), 2347–2381.CrossRef
3.
go back to reference Do, D.-T., & Van Nguyen, M.-S. (2019). Device-to-device transmission modes in NOMA network with and without wireless power transfer. Computer Communications, 139, 67–77.CrossRef Do, D.-T., & Van Nguyen, M.-S. (2019). Device-to-device transmission modes in NOMA network with and without wireless power transfer. Computer Communications, 139, 67–77.CrossRef
4.
go back to reference Do, D.-T., Le, A.-T., & Lee, B. M. (2020). NOMA in cooperative underlay cognitive radio networks under imperfect SIC. IEEE Access, 8, 86180–86195.CrossRef Do, D.-T., Le, A.-T., & Lee, B. M. (2020). NOMA in cooperative underlay cognitive radio networks under imperfect SIC. IEEE Access, 8, 86180–86195.CrossRef
5.
go back to reference Do, D.-T., Vaezi, M., & Nguyen, T.-L. (2018). Wireless powered cooperative relaying using NOMA with imperfect CSI. In Proceedings of the IEEE Globecom workshops (GC Wkshps), Abu Dhabi, UAE (pp. 1–6). Do, D.-T., Vaezi, M., & Nguyen, T.-L. (2018). Wireless powered cooperative relaying using NOMA with imperfect CSI. In Proceedings of the IEEE Globecom workshops (GC Wkshps), Abu Dhabi, UAE (pp. 1–6).
6.
go back to reference Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.CrossRef Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.CrossRef
7.
go back to reference Nikopour, H. et al. (2014). SCMA for downlink multiple access of 5G wireless networks. In Proceedings of the IEEE global communications conference (GLOBECOM), Austin, TX, USA (pp. 3940–3945). Nikopour, H. et al. (2014). SCMA for downlink multiple access of 5G wireless networks. In Proceedings of the IEEE global communications conference (GLOBECOM), Austin, TX, USA (pp. 3940–3945).
8.
go back to reference Ling, B., Dong, C., Dai, J., & Lin, J. (2017). Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 6(4), 498–501.CrossRef Ling, B., Dong, C., Dai, J., & Lin, J. (2017). Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 6(4), 498–501.CrossRef
9.
go back to reference Kschischang, F. R., Frey, B. J., & Loeliger, H.-A. (2001). JFactor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.MathSciNetCrossRef Kschischang, F. R., Frey, B. J., & Loeliger, H.-A. (2001). JFactor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.MathSciNetCrossRef
10.
go back to reference Moltafet, M., Yamchi, N. M., Javan, M. R., & Azmi, P. (2018). Comparison study between PD-NOMA and SCMA. IEEE Transactions on Vehicular Technology, 67(2), 1830–1834.CrossRef Moltafet, M., Yamchi, N. M., Javan, M. R., & Azmi, P. (2018). Comparison study between PD-NOMA and SCMA. IEEE Transactions on Vehicular Technology, 67(2), 1830–1834.CrossRef
11.
go back to reference Moltafet, M., Mokari, N., Javan, M. R., Saeedi, H., & Pishro-Nik, H. (2018). A new multiple access technique for 5G: Power domain sparse code multiple access (PSMA). IEEE Access, 6, 747–759.CrossRef Moltafet, M., Mokari, N., Javan, M. R., Saeedi, H., & Pishro-Nik, H. (2018). A new multiple access technique for 5G: Power domain sparse code multiple access (PSMA). IEEE Access, 6, 747–759.CrossRef
12.
go back to reference Do, Dinh-Thuan. (2015). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems, 62(2), 449–459.CrossRef Do, Dinh-Thuan. (2015). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems, 62(2), 449–459.CrossRef
13.
go back to reference Do, D.-T., Nguyen, H.-S., Voznak, M., & Nguyen, T.-S. (2017). Wireless powered relaying networks under imperfect channel state information: System performance and optimal policy for instantaneous rate. Radioengineering, 26(3), 869–877.CrossRef Do, D.-T., Nguyen, H.-S., Voznak, M., & Nguyen, T.-S. (2017). Wireless powered relaying networks under imperfect channel state information: System performance and optimal policy for instantaneous rate. Radioengineering, 26(3), 869–877.CrossRef
14.
go back to reference Do, D.-T., Nguyen, H.-S. (2016). A tractable approach to analyze the energy-aware two-way relaying networks in presence of co-channel interference. EURASIP Journal on Wireless Communications and Networking. Do, D.-T., Nguyen, H.-S. (2016). A tractable approach to analyze the energy-aware two-way relaying networks in presence of co-channel interference. EURASIP Journal on Wireless Communications and Networking.
15.
go back to reference Nguyen, T.-L., & Do, D.-T. (2018). Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access. Wireless Communications and Mobile Computing, 2018, Article ID 2525492. Nguyen, T.-L., & Do, D.-T. (2018). Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access. Wireless Communications and Mobile Computing, 2018, Article ID 2525492.
16.
go back to reference Nguyen, X.-X., & Do, Dinh-Thuan. (2017). Maximum harvested energy policy in full-duplex relaying networks with SWIPT. International Journal of Communication Systems, 30, 17. Nguyen, X.-X., & Do, Dinh-Thuan. (2017). Maximum harvested energy policy in full-duplex relaying networks with SWIPT. International Journal of Communication Systems, 30, 17.
17.
go back to reference Do, D.-T., Van Nguyen, M.-S., Hoang, T.-A., & Lee, B.-M. (2019). Exploiting joint base station equipped multiple antenna and full-duplex D2D users in power domain division based multiple access networks. Sensors (Basel), 19(11), 2475.CrossRef Do, D.-T., Van Nguyen, M.-S., Hoang, T.-A., & Lee, B.-M. (2019). Exploiting joint base station equipped multiple antenna and full-duplex D2D users in power domain division based multiple access networks. Sensors (Basel), 19(11), 2475.CrossRef
18.
go back to reference Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device-aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device-aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471.
19.
go back to reference Sun, Q., Han, S. F., Chin-Lin, I., & Pan, Z. G. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters, 4(4), 405–408.CrossRef Sun, Q., Han, S. F., Chin-Lin, I., & Pan, Z. G. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters, 4(4), 405–408.CrossRef
20.
go back to reference Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505.CrossRef Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505.CrossRef
21.
go back to reference Dang, H.-P., Van Nguyen, M., Do, D.-T., Pham, H. L., Selim, B., & Kaddoum, G. (2020). Joint relay selection, full-duplex and device-to-device transmission in wireless powered NOMA networks. IEEE Access, 8, 82442–82460.CrossRef Dang, H.-P., Van Nguyen, M., Do, D.-T., Pham, H. L., Selim, B., & Kaddoum, G. (2020). Joint relay selection, full-duplex and device-to-device transmission in wireless powered NOMA networks. IEEE Access, 8, 82442–82460.CrossRef
22.
go back to reference Peng, M., et al. (2016). Recent advances in cloud radio access networks: System architectures, key techniques, and open issues. IEEE Communications Surveys and Tutorials, 18(3), 2282–2308.CrossRef Peng, M., et al. (2016). Recent advances in cloud radio access networks: System architectures, key techniques, and open issues. IEEE Communications Surveys and Tutorials, 18(3), 2282–2308.CrossRef
23.
go back to reference Vien, Q. T., Ogbonna, N., Nguyen, H. X., Trestian, R., & Shah, P. (2015). Non-orthogonal multiple access for wireless downlink in cloud radio access networks. In Proceedings of the IEEE EW 2015, Budapest, Hungary (pp. 434–439). Vien, Q. T., Ogbonna, N., Nguyen, H. X., Trestian, R., & Shah, P. (2015). Non-orthogonal multiple access for wireless downlink in cloud radio access networks. In Proceedings of the IEEE EW 2015, Budapest, Hungary (pp. 434–439).
24.
go back to reference Chingoska, H., Hadzi-Velkov, Z., Nikoloska, I., & Zlatanov, N. (2016). Resource allocation in wireless powered communication networks with non-orthogonal multiple access. IEEE Wireless Communications Letters, 5(6), 684–687.CrossRef Chingoska, H., Hadzi-Velkov, Z., Nikoloska, I., & Zlatanov, N. (2016). Resource allocation in wireless powered communication networks with non-orthogonal multiple access. IEEE Wireless Communications Letters, 5(6), 684–687.CrossRef
25.
go back to reference Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless-powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(12), 8422–8436.CrossRef Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless-powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(12), 8422–8436.CrossRef
26.
go back to reference Diamantoulakis, P. D., Pappi, K. N., Karagiannidis, G. K., Xing, H., & Nallanathan, A. (2017). Joint downlink/uplink design for wireless powered networks with interference. IEEE Access, 5, 1534–1547.CrossRef Diamantoulakis, P. D., Pappi, K. N., Karagiannidis, G. K., Xing, H., & Nallanathan, A. (2017). Joint downlink/uplink design for wireless powered networks with interference. IEEE Access, 5, 1534–1547.CrossRef
27.
go back to reference Zewde, T. A., & Gursoy, M. C. (2018). NOMA-based energy-efficient wireless powered communications. IEEE Transactions on Green Communications and Networking, 2(3), 679–692.CrossRef Zewde, T. A., & Gursoy, M. C. (2018). NOMA-based energy-efficient wireless powered communications. IEEE Transactions on Green Communications and Networking, 2(3), 679–692.CrossRef
28.
go back to reference Gong, J., & Chen, X. (2017). Achievable rate region of non-orthogonal multiple access systems with wireless powered decoder. IEEE Journal on Selected Areas in Communications, 35(12), 2846–2859.CrossRef Gong, J., & Chen, X. (2017). Achievable rate region of non-orthogonal multiple access systems with wireless powered decoder. IEEE Journal on Selected Areas in Communications, 35(12), 2846–2859.CrossRef
29.
go back to reference Sun, H., Zhou, F., Hu, R. Q., & Hanzo, L. (2019). Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE Journal on Selected Areas in Communications, 37(1), 142–155.CrossRef Sun, H., Zhou, F., Hu, R. Q., & Hanzo, L. (2019). Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE Journal on Selected Areas in Communications, 37(1), 142–155.CrossRef
30.
go back to reference Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef
31.
go back to reference Dai, L., Wang, B., Peng, M., & Chen, S. (2019). Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 37(1), 131–141.CrossRef Dai, L., Wang, B., Peng, M., & Chen, S. (2019). Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 37(1), 131–141.CrossRef
32.
go back to reference Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085.CrossRef Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085.CrossRef
33.
go back to reference Boshkovska, E., Morsi, R., Ng, D. W. K., & Schober, R. (2016). Power allocation and scheduling for SWIPT systems with non-linear energy harvesting model. In Proceedings of the IEEE international conference on communication (pp. 1–6). Boshkovska, E., Morsi, R., Ng, D. W. K., & Schober, R. (2016). Power allocation and scheduling for SWIPT systems with non-linear energy harvesting model. In Proceedings of the IEEE international conference on communication (pp. 1–6).
34.
go back to reference Boshkovska, E., Ng, D. W. K., Zlatanov, N., Koelpin, A., & Schober, R. (2017). Robust resource allocation for MIMO wireless powered communication networks based on a non-linear EH model. IEEE Transactions on Communications, 65(5), 1984–1999.CrossRef Boshkovska, E., Ng, D. W. K., Zlatanov, N., Koelpin, A., & Schober, R. (2017). Robust resource allocation for MIMO wireless powered communication networks based on a non-linear EH model. IEEE Transactions on Communications, 65(5), 1984–1999.CrossRef
35.
go back to reference Muhammad, F., Abbas, Z. H., & Li, F. Y. (2017). Cell association with load balancing in nonuniform heterogeneous cellular networks: Coverage probability and rate analysis. IEEE Transactions on Vehicular Technology, 66(6), 5241–5255.CrossRef Muhammad, F., Abbas, Z. H., & Li, F. Y. (2017). Cell association with load balancing in nonuniform heterogeneous cellular networks: Coverage probability and rate analysis. IEEE Transactions on Vehicular Technology, 66(6), 5241–5255.CrossRef
36.
go back to reference Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.CrossRef Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.CrossRef
37.
go back to reference Wang, H., Zhou, X., & Reed, M. C. (2014). Coverage and throughput analysis with a non-uniform small cell deployment. IEEE Transactions on Wireless Communications, 13(4), 2047–2059.CrossRef Wang, H., Zhou, X., & Reed, M. C. (2014). Coverage and throughput analysis with a non-uniform small cell deployment. IEEE Transactions on Wireless Communications, 13(4), 2047–2059.CrossRef
38.
go back to reference Wu, H., Tao, X., Xu, J., & Li, N. (2015). Coverage analysis for comp in two tier hetnets with non-uniformly deployed femtocells. IEEE Communications Letters, 19(9), 1600–1603.CrossRef Wu, H., Tao, X., Xu, J., & Li, N. (2015). Coverage analysis for comp in two tier hetnets with non-uniformly deployed femtocells. IEEE Communications Letters, 19(9), 1600–1603.CrossRef
39.
go back to reference Han, S., Yang, C., & Chen, P. (2015). Full duplex-assisted intercell interference cancellation in heterogeneous networks. IEEE Transactions on Communications, 63(12), 5218–5234.CrossRef Han, S., Yang, C., & Chen, P. (2015). Full duplex-assisted intercell interference cancellation in heterogeneous networks. IEEE Transactions on Communications, 63(12), 5218–5234.CrossRef
40.
go back to reference Wildemeersch, M., Quek, T. Q. S., Kountouris, M., Rabbachin, A., & Slump, C. H. (2014). Successive interference cancellation in heterogeneous networks. IEEE Transactions on Communications, 62(12), 4440–4453.CrossRef Wildemeersch, M., Quek, T. Q. S., Kountouris, M., Rabbachin, A., & Slump, C. H. (2014). Successive interference cancellation in heterogeneous networks. IEEE Transactions on Communications, 62(12), 4440–4453.CrossRef
41.
go back to reference Chen, L., Ma, L., Xu, Y., & Leung, V. C. M. (2019). Hypergraph spectral clustering based spectrum resource allocation for dense NOMA-HetNet. IEEE Wireless Communications Letters, 8(1), 305–308.CrossRef Chen, L., Ma, L., Xu, Y., & Leung, V. C. M. (2019). Hypergraph spectral clustering based spectrum resource allocation for dense NOMA-HetNet. IEEE Wireless Communications Letters, 8(1), 305–308.CrossRef
42.
go back to reference Nasser, A., Muta, O., Elsabrouty, M., & Gacanin, H. (2019). Interference mitigation and power allocation scheme for downlink MIMO-NOMA HetNet. IEEE Transactions on Vehicular Technology, 68(7), 6805–6816.CrossRef Nasser, A., Muta, O., Elsabrouty, M., & Gacanin, H. (2019). Interference mitigation and power allocation scheme for downlink MIMO-NOMA HetNet. IEEE Transactions on Vehicular Technology, 68(7), 6805–6816.CrossRef
43.
go back to reference Arfken, G. (1985). Taylor’s expansion. In G. B. Arfken, H. J. Weber, & F. E. Harris (Eds.), Mathematical methods for physicists (3rd ed., pp. 303–313). Orlando, FL: Academic Press.MATH Arfken, G. (1985). Taylor’s expansion. In G. B. Arfken, H. J. Weber, & F. E. Harris (Eds.), Mathematical methods for physicists (3rd ed., pp. 303–313). Orlando, FL: Academic Press.MATH
44.
go back to reference Zwillinger, D. (2014). Table of integrals, series, and products. Amsterdam: Elsevier. Zwillinger, D. (2014). Table of integrals, series, and products. Amsterdam: Elsevier.
Metadata
Title
Joint of full-duplex relay, non-linear energy harvesting and multiple access in performance improvement of cell-edge user in heterogeneous networks
Authors
Dinh-Thuan Do
Chi-Bao Le
Anh-Tu Le
Publication date
25-07-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 8/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02436-7

Other articles of this Issue 8/2020

Wireless Networks 8/2020 Go to the issue