Skip to main content
Top
Published in: Wireless Personal Communications 3/2020

05-06-2020

Joint RSSD/AOA Source Localization: Bias Analysis and Asymptotically Efficient Estimator

Authors: Ali Heydari, Masoudreza Aghabozorgi

Published in: Wireless Personal Communications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we study blind source localization problem based on the joint received signal strength difference (RSSD) and angle of arrival (AOA) measurements with unknown transmit power of source. Since RSSD and AOA measurements are uncorrelated, combining two methods leads to a better performance for source localization. This paper focus on the pseudo linear estimator (PLE) with a closed-form and low complexity solution. One of the main limitations in this estimator is the bias created from the correlation between system matrix and error vector, which is not vanished by increasing the number of measurements. To overcome this problem first, we present a bias compensated PLE using the closed instrumental variable (IV). Then, for improving the localization performance a weighting IV estimator (WIV) is presented. Finally, for achieving the Cramer–Rao lower bound (CRLB) an improved WIV (IWIV) estimator is used based on the known relation between the estimated parameters of WIV estimator. The proposed IWIV estimator is proved to be asymptotically efficient (i.e., obtaining zero bias and the Cramer–Rao lower bound). Numerical simulations also verify the theoretical development and show source localization using hybrid information RSSD/AOA has a superior performance than RSSD and AOA solely.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wang, Z., Luo, J. A., & Zhang, X. P. (2012). A novel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Transactions on Signal Processing, 60, 6166–6181.MathSciNetCrossRef Wang, Z., Luo, J. A., & Zhang, X. P. (2012). A novel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Transactions on Signal Processing, 60, 6166–6181.MathSciNetCrossRef
2.
go back to reference Li, Z., Chung, P. J., & Mulgrew, B. (2017). Distributed target localization using quantized received signal strength. Signal Processing, 134, 214–223.CrossRef Li, Z., Chung, P. J., & Mulgrew, B. (2017). Distributed target localization using quantized received signal strength. Signal Processing, 134, 214–223.CrossRef
3.
go back to reference Gazestani, A. H., Shahbazian, R., & Gorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97, 3587–3599.CrossRef Gazestani, A. H., Shahbazian, R., & Gorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97, 3587–3599.CrossRef
4.
go back to reference Thompson, A. R., Moran, J. M., & Swenson, G. W. (2008). Interferometry and synthesis in radio astronomy. New York: Wiley. Thompson, A. R., Moran, J. M., & Swenson, G. W. (2008). Interferometry and synthesis in radio astronomy. New York: Wiley.
5.
go back to reference Levorato, R., & Pagello, E. (2015, April). DOA acoustic source localization in mobile robot sensor networks. In 2015 IEEE International conference on autonomous robot systems and competitions (pp. 71–76). Levorato, R., & Pagello, E. (2015, April). DOA acoustic source localization in mobile robot sensor networks. In 2015 IEEE International conference on autonomous robot systems and competitions (pp. 71–76).
6.
go back to reference Meng, W., Xiao, W., & Xie, L. (2011). An efficient EM algorithm for energy-based multi source localization in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement, 60, 1017–1027.CrossRef Meng, W., Xiao, W., & Xie, L. (2011). An efficient EM algorithm for energy-based multi source localization in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement, 60, 1017–1027.CrossRef
7.
go back to reference Wen, C. Y., & Chan, F. K. (2010). Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks. Sensors, 10, 9742–9770.CrossRef Wen, C. Y., & Chan, F. K. (2010). Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks. Sensors, 10, 9742–9770.CrossRef
8.
go back to reference So, H. C., & Shiu, E. M. K. (2003). Performance of TOA-AOA hybrid mobile location. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86(8), 2136–2138. So, H. C., & Shiu, E. M. K. (2003). Performance of TOA-AOA hybrid mobile location. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86(8), 2136–2138.
9.
go back to reference Yao, Z., Huang, J., Wang, S., & Ruby, R. (2017). Efficient local optimisation-based approach for non-convex and non-smooth source localisation problems. IET Radar, Sonar, Navigation, 11, 1051–1054.CrossRef Yao, Z., Huang, J., Wang, S., & Ruby, R. (2017). Efficient local optimisation-based approach for non-convex and non-smooth source localisation problems. IET Radar, Sonar, Navigation, 11, 1051–1054.CrossRef
10.
go back to reference Vaghefi, R. M., & Buehrer, M. (2015). Cooperative localization in NLOS environments using semidefinite programming. IEEE Communications Letters, 19, 1382–1385.CrossRef Vaghefi, R. M., & Buehrer, M. (2015). Cooperative localization in NLOS environments using semidefinite programming. IEEE Communications Letters, 19, 1382–1385.CrossRef
11.
go back to reference Lin, L., So, H. C., & Chan, Y. T. (2013). Accurate and simple source localization using differential received signal strength. Digital Signal Processing, 23, 736–743.MathSciNetCrossRef Lin, L., So, H. C., & Chan, Y. T. (2013). Accurate and simple source localization using differential received signal strength. Digital Signal Processing, 23, 736–743.MathSciNetCrossRef
12.
go back to reference Cheung, K. W., So, H. C., Ma, W. K., & Chan, Y. T. (2004). Least squares algorithms for time-of-arrival-based mobile location. IEEE Transactions on Signal Processing, 52, 1121–1128.MathSciNetCrossRef Cheung, K. W., So, H. C., Ma, W. K., & Chan, Y. T. (2004). Least squares algorithms for time-of-arrival-based mobile location. IEEE Transactions on Signal Processing, 52, 1121–1128.MathSciNetCrossRef
13.
go back to reference Ho, K. C., & Sun, M. (2008). Passive source localization using time differences of arrival and gain ratios of arrival. IEEE Transactions on Signal Processing, 56, 464–477.MathSciNetCrossRef Ho, K. C., & Sun, M. (2008). Passive source localization using time differences of arrival and gain ratios of arrival. IEEE Transactions on Signal Processing, 56, 464–477.MathSciNetCrossRef
14.
go back to reference Yin, J., Wan, Q., Yang, S., & Ho, K. C. (2016). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23, 144–148.CrossRef Yin, J., Wan, Q., Yang, S., & Ho, K. C. (2016). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23, 144–148.CrossRef
15.
go back to reference Klukas, R., & Lachapalle, G. (2003). An enhanced two-step least squared approach for TDOA/AOA wireless location. In IEEE international conference on communications, ICC, 03(2), (pp. 987–991). Klukas, R., & Lachapalle, G. (2003). An enhanced two-step least squared approach for TDOA/AOA wireless location. In IEEE international conference on communications, ICC, 03(2), (pp. 987–991).
16.
go back to reference Deng, P., & Fan, P.Z. (2000). An AOA assisted TOA positioning systeem. In Proceedings of international conference on communication technology, China, (pp. 1501–1504). Deng, P., & Fan, P.Z. (2000). An AOA assisted TOA positioning systeem. In Proceedings of international conference on communication technology, China, (pp. 1501–1504).
17.
go back to reference Yang, T., & Wu, X. (2015). Accurate location estimation of sensor node using received signal strength measurements. AEU-International Journal of Electronics and Communications, 69, 765–770.CrossRef Yang, T., & Wu, X. (2015). Accurate location estimation of sensor node using received signal strength measurements. AEU-International Journal of Electronics and Communications, 69, 765–770.CrossRef
18.
go back to reference Zhao, B., Guan, X., Xie, L., & Xiao, W. (2011). Sensor selection for received signal strength-based source localization in wireless sensor networks. Journal of Control Theory and Applications, 9, 51–57.MathSciNetCrossRef Zhao, B., Guan, X., Xie, L., & Xiao, W. (2011). Sensor selection for received signal strength-based source localization in wireless sensor networks. Journal of Control Theory and Applications, 9, 51–57.MathSciNetCrossRef
19.
go back to reference Kalpana, R., & Baskaran, M. (2017). TAR: TOAAOA based random transmission directed localization. Wireless Personal Communications, 90(4), 889–902. Kalpana, R., & Baskaran, M. (2017). TAR: TOAAOA based random transmission directed localization. Wireless Personal Communications, 90(4), 889–902.
20.
go back to reference Li, W., Tang, Q., Huang, C., Ren, C., & Li, Y. (2017). A new close form location algorithm with AOA and TDOA for mobile user. Wireless Personal Communications, 97, 3061–3080.CrossRef Li, W., Tang, Q., Huang, C., Ren, C., & Li, Y. (2017). A new close form location algorithm with AOA and TDOA for mobile user. Wireless Personal Communications, 97, 3061–3080.CrossRef
21.
go back to reference Wang, J., Chen, J., & Cabric, D. (2013). Cramer–Rao bounds for joint RSS / DOA-based cognitive radio networks. IEEE Transactions on Wireless Communications, 12, 1363–1375.CrossRef Wang, J., Chen, J., & Cabric, D. (2013). Cramer–Rao bounds for joint RSS / DOA-based cognitive radio networks. IEEE Transactions on Wireless Communications, 12, 1363–1375.CrossRef
22.
go back to reference Patwari, N. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51, 2137–2148.CrossRef Patwari, N. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51, 2137–2148.CrossRef
23.
go back to reference Liu, B. C., Lin, K. H., & Wu, J. C. (2006). Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Transactions on Vehicular Technology, 55, 499–509.CrossRef Liu, B. C., Lin, K. H., & Wu, J. C. (2006). Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Transactions on Vehicular Technology, 55, 499–509.CrossRef
24.
go back to reference Wang, S., & Inkol, R. (2011). A near-optimal least squares solution to received signal strength difference based geolocation. In ICASSP. Wang, S., & Inkol, R. (2011). A near-optimal least squares solution to received signal strength difference based geolocation. In ICASSP.
25.
go back to reference Liu, B. C., & Lin, K. H. (2008). Distance difference error correction by least square for stationary signal-strength-difference-based hyperbolic location in cellular communications. IEEE Transactions on Vehicular Technology, 57, 227–238.CrossRef Liu, B. C., & Lin, K. H. (2008). Distance difference error correction by least square for stationary signal-strength-difference-based hyperbolic location in cellular communications. IEEE Transactions on Vehicular Technology, 57, 227–238.CrossRef
26.
go back to reference Wang, G., Chen, H., Li, Y., & Jin, M. (2012). On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wireless Communications Letters, 1, 536–539.CrossRef Wang, G., Chen, H., Li, Y., & Jin, M. (2012). On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wireless Communications Letters, 1, 536–539.CrossRef
27.
go back to reference Lohrasbipeyadeh, H., Gulliver, T. A., & Amindavar, H. (2014). A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wireless Communications Letters, 3, 433–436.CrossRef Lohrasbipeyadeh, H., Gulliver, T. A., & Amindavar, H. (2014). A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wireless Communications Letters, 3, 433–436.CrossRef
28.
go back to reference Shao, H., Zhang, X., & Wang, Z. (2014). Efficient closed-form algorithms for AOA Based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62, 2580–2594.MathSciNetCrossRef Shao, H., Zhang, X., & Wang, Z. (2014). Efficient closed-form algorithms for AOA Based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62, 2580–2594.MathSciNetCrossRef
29.
go back to reference Zhou, Q., & Duan, Z. (2014). Weighted intersections of bearing lines for AOA based localization. In 17th International conference on information fusion (FUSION). Zhou, Q., & Duan, Z. (2014). Weighted intersections of bearing lines for AOA based localization. In 17th International conference on information fusion (FUSION).
30.
go back to reference Gavish, M., & Weiss, A. J. (1992). Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems, 28, 817–828.CrossRef Gavish, M., & Weiss, A. J. (1992). Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems, 28, 817–828.CrossRef
31.
go back to reference Ho, K. C. (2012). Bias reduction for an explicit solution of source localization using TDOA. IEEE Transactions on Signal Processing, 60, 2101–2114.MathSciNetCrossRef Ho, K. C. (2012). Bias reduction for an explicit solution of source localization using TDOA. IEEE Transactions on Signal Processing, 60, 2101–2114.MathSciNetCrossRef
32.
go back to reference Nardone, S., & Lindgren, A. (1984). Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Transactions on Automatic Control, 29, 775–787.CrossRef Nardone, S., & Lindgren, A. (1984). Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Transactions on Automatic Control, 29, 775–787.CrossRef
33.
go back to reference Chan, Y., & Rudnicki, S. (1992). Bearings-only and Doppler-bearing tracking using instrumental variables. IEEE Transactions on Aerospace and Electronic Systems, 28, 1076–1083.CrossRef Chan, Y., & Rudnicki, S. (1992). Bearings-only and Doppler-bearing tracking using instrumental variables. IEEE Transactions on Aerospace and Electronic Systems, 28, 1076–1083.CrossRef
34.
go back to reference Mendel, J. M. (1995). Lessons in estimation theory for signal processing, communications, and control. Upper Saddle River: Prentice-Hall.MATH Mendel, J. M. (1995). Lessons in estimation theory for signal processing, communications, and control. Upper Saddle River: Prentice-Hall.MATH
35.
go back to reference Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42, 1905–1915.CrossRef Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42, 1905–1915.CrossRef
36.
go back to reference Cheung, K. W., & So, H. C. (2005). A multidimensional scaling framework for mobile location using time-of-arrival measurements. IEEE Transactions on Signal Processing, 53, 460–470.MathSciNetCrossRef Cheung, K. W., & So, H. C. (2005). A multidimensional scaling framework for mobile location using time-of-arrival measurements. IEEE Transactions on Signal Processing, 53, 460–470.MathSciNetCrossRef
Metadata
Title
Joint RSSD/AOA Source Localization: Bias Analysis and Asymptotically Efficient Estimator
Authors
Ali Heydari
Masoudreza Aghabozorgi
Publication date
05-06-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07495-9

Other articles of this Issue 3/2020

Wireless Personal Communications 3/2020 Go to the issue