Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 7/2019

20-06-2018 | Original Article

Joint sparse representation and locality preserving projection for feature extraction

Authors: Wei Zhang, Peipei Kang, Xiaozhao Fang, Luyao Teng, Na Han

Published in: International Journal of Machine Learning and Cybernetics | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Traditional graph-based feature extraction methods use two separated procedures, i.e., graph learning and projection learning to perform feature extraction. They make the feature extraction result highly dependent on the quality of the initial fixed graph, while the graph may not be the optimal one for feature extraction. In this paper, we propose a novel unsupervised feature extraction method, i.e., joint sparse representation and locality preserving projection (JSRLPP), in which the graph construction and feature extraction are simultaneously carried out. Specifically, we adaptively learn the similarity matrix by sparse representation, and at the same time, learn the projection matrix by preserving local structure. Compared with traditional feature extraction methods, our approach unifies graph learning and projection learning to a common framework, thus learns a more suitable graph for feature extraction. Experiments on several public image data sets demonstrate the effectiveness of our proposed algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Shang R, Chang J, Jiao L, Xue Y (2017) Unsupervised feature selection based on self-representation sparse regression and local similarity preserving. Int J Mach Learn Cybern 7:1–14CrossRef Shang R, Chang J, Jiao L, Xue Y (2017) Unsupervised feature selection based on self-representation sparse regression and local similarity preserving. Int J Mach Learn Cybern 7:1–14CrossRef
2.
go back to reference He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. In: International Conference on Neural Information Processing Systems, MIT Press, pp 507–514 He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. In: International Conference on Neural Information Processing Systems, MIT Press, pp 507–514
4.
go back to reference Hou C, Nie F, Li X, Yi D, Wu Y (2017) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern 44(6):793–804 Hou C, Nie F, Li X, Yi D, Wu Y (2017) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern 44(6):793–804
5.
go back to reference Fang X, Xu Y, Li X, Fan Z, Liu H, Chen Y (2014) Locality and similarity preserving embedding for feature selection. Neurocomputing 128(5):304–315CrossRef Fang X, Xu Y, Li X, Fan Z, Liu H, Chen Y (2014) Locality and similarity preserving embedding for feature selection. Neurocomputing 128(5):304–315CrossRef
6.
go back to reference Cai Z, Zhu W (2017) Multi-label feature selection via feature manifold learning and sparsity regularization. Int J Mach Learn Cybern, 1–14 Cai Z, Zhu W (2017) Multi-label feature selection via feature manifold learning and sparsity regularization. Int J Mach Learn Cybern, 1–14
7.
go back to reference Nie F, Xu D, Tsang I, Zhang C (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process 19(7):1921–1932MathSciNetCrossRefMATH Nie F, Xu D, Tsang I, Zhang C (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process 19(7):1921–1932MathSciNetCrossRefMATH
8.
go back to reference Xu Y, Zhu Q, Fan Z, Wang Y, Pan J (2013) From the idea of sparse representation to a representation-based transformation method for feature extraction. Neurocomputing 113:168–176CrossRef Xu Y, Zhu Q, Fan Z, Wang Y, Pan J (2013) From the idea of sparse representation to a representation-based transformation method for feature extraction. Neurocomputing 113:168–176CrossRef
9.
go back to reference Turk M, Pentland A (1991) Eigenfaces for recognition. J Cognit Neurosci 3(1):71–86CrossRef Turk M, Pentland A (1991) Eigenfaces for recognition. J Cognit Neurosci 3(1):71–86CrossRef
10.
go back to reference Belhumeur P, Hespanha J, Kriegman D (1996) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. In: European Conference on Computer Vision, pp 43–58 Belhumeur P, Hespanha J, Kriegman D (1996) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. In: European Conference on Computer Vision, pp 43–58
11.
go back to reference Bartlett M (1998) Independent component representations for face recognition. In: Proceedings of SPIE Symposium on Electronic Imaging, vol 3299 Bartlett M (1998) Independent component representations for face recognition. In: Proceedings of SPIE Symposium on Electronic Imaging, vol 3299
12.
go back to reference Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
13.
go back to reference Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201CrossRef Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201CrossRef
14.
go back to reference Yang M (2002) Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp 215–220 Yang M (2002) Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp 215–220
15.
go back to reference Yang J, Gao X, Zhang D, Yang J (2005) Kerenel ICA: an alternative formulation and its application to face recognition. Pattern Recognit 38(10):1784–1787CrossRefMATH Yang J, Gao X, Zhang D, Yang J (2005) Kerenel ICA: an alternative formulation and its application to face recognition. Pattern Recognit 38(10):1784–1787CrossRefMATH
16.
go back to reference Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–6CrossRef Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–6CrossRef
17.
go back to reference Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. MIT Press 15(6):1373–1396 Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. MIT Press 15(6):1373–1396
18.
go back to reference He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. In: IEEE International Conference on Computer Vision, pp 2(23):1208–1213 He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. In: IEEE International Conference on Computer Vision, pp 2(23):1208–1213
19.
go back to reference He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340CrossRef He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340CrossRef
20.
go back to reference Pang Y, Zhang L, Liu Z, Yu N, Li H (2005) Neighborhood preserving projections (NPP): a novel linear dimension reduction method. In: International Conference on Advances in Intelligent Computing, pp 3644:117–125 Pang Y, Zhang L, Liu Z, Yu N, Li H (2005) Neighborhood preserving projections (NPP): a novel linear dimension reduction method. In: International Conference on Advances in Intelligent Computing, pp 3644:117–125
21.
go back to reference Nie F, Xiang S, Song Y, Zhang C (2009) Orthogonal locality minimizing globality maximizing projections for feature extraction. Opt Eng 48(1):017202CrossRef Nie F, Xiang S, Song Y, Zhang C (2009) Orthogonal locality minimizing globality maximizing projections for feature extraction. Opt Eng 48(1):017202CrossRef
22.
go back to reference Nie F, Cai X, Huang H (2014) Flexible shift-invariant locality and globality preserving projections. In: The European Conference on Machine Learning and Knowledge Discovery in Databases, pp 485–500 Nie F, Cai X, Huang H (2014) Flexible shift-invariant locality and globality preserving projections. In: The European Conference on Machine Learning and Knowledge Discovery in Databases, pp 485–500
23.
go back to reference Lai Z, Xu Y, Yang J, Shen L, Zhang D (2017) Rotational invariant dimensionality reduction algorithms. IEEE Trans Cybern 47(11):3733CrossRef Lai Z, Xu Y, Yang J, Shen L, Zhang D (2017) Rotational invariant dimensionality reduction algorithms. IEEE Trans Cybern 47(11):3733CrossRef
24.
go back to reference Meng M, Wei J, Wang J, Ma Q, Wang X (2015) Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing. Int J Mach Learn Cybern 8(3):793–805CrossRef Meng M, Wei J, Wang J, Ma Q, Wang X (2015) Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing. Int J Mach Learn Cybern 8(3):793–805CrossRef
25.
go back to reference Bengio Y, Vincent P, Delalleau O, Roux N, Ouimet M (2003) Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral clustering. In: International Conference on Neural Information Processing Systems, pp 16:177–184 Bengio Y, Vincent P, Delalleau O, Roux N, Ouimet M (2003) Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral clustering. In: International Conference on Neural Information Processing Systems, pp 16:177–184
26.
go back to reference Wright J, Yang A, Arvind G, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang A, Arvind G, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
27.
go back to reference Zhang Z, Xu Y, Yang J, Li X, Zhang D (2017) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530CrossRef Zhang Z, Xu Y, Yang J, Li X, Zhang D (2017) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530CrossRef
28.
go back to reference Lai Z, Wong W, Xu Y, Yang J, Zhang D (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735MathSciNetCrossRef Lai Z, Wong W, Xu Y, Yang J, Zhang D (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735MathSciNetCrossRef
29.
go back to reference Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012). Non-negative low rank and sparse graph for semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 157(10):2328–2335 Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012). Non-negative low rank and sparse graph for semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 157(10):2328–2335
30.
go back to reference Nie F, Zhu W, Li X (2017) Unsupervised large graph embedding. In: Proceeding of the Thirty-First AAAI Conference on Artificial Intelligence, pp 2422–2428 Nie F, Zhu W, Li X (2017) Unsupervised large graph embedding. In: Proceeding of the Thirty-First AAAI Conference on Artificial Intelligence, pp 2422–2428
31.
go back to reference Yan S, Wang H (2009) Semi-supervised learning by sparse representation. In: Siam International Conference on Data Mining, 792–801 Yan S, Wang H (2009) Semi-supervised learning by sparse representation. In: Siam International Conference on Data Mining, 792–801
32.
go back to reference Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341CrossRefMATH Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341CrossRefMATH
33.
go back to reference Liu Z, Yin J, Jin Z (2010) Locality preserving projections based on L1 Graph. Pattern Recognition, 1–4 Liu Z, Yin J, Jin Z (2010) Locality preserving projections based on L1 Graph. Pattern Recognition, 1–4
34.
go back to reference Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 977–986 Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 977–986
35.
go back to reference Wong W, Lai Z, Wen J, Fang X, Lu Y (2017) Low rank embedding for robust image feature extraction. IEEE Trans Image Process 26(6):2905–2917MathSciNetCrossRefMATH Wong W, Lai Z, Wen J, Fang X, Lu Y (2017) Low rank embedding for robust image feature extraction. IEEE Trans Image Process 26(6):2905–2917MathSciNetCrossRefMATH
36.
go back to reference Fang X, Xu Y, Li X, Lai Z, Teng S, Fei L (2017) Orthogonal self-guided similarity preserving projection for classification and clustering. Neural Netw 88:1–8CrossRef Fang X, Xu Y, Li X, Lai Z, Teng S, Fei L (2017) Orthogonal self-guided similarity preserving projection for classification and clustering. Neural Netw 88:1–8CrossRef
37.
go back to reference Wen J, Zhang B, Xu Y, Yang J, Han N (2018) Adaptive weighted nonnegative low-rank representation. Pattern Recognit 81:326–340CrossRef Wen J, Zhang B, Xu Y, Yang J, Han N (2018) Adaptive weighted nonnegative low-rank representation. Pattern Recognit 81:326–340CrossRef
38.
go back to reference Baraniuk R (2007) A lecture on compressive sensing. IEEE Signal Processing Magazine, 1–9 Baraniuk R (2007) A lecture on compressive sensing. IEEE Signal Processing Magazine, 1–9
39.
go back to reference Murray J, Kreutz-Delgado K (2007) Visual recognition and inference using dynamic overcomplete sparse learning. Neural Comput 19(9):2301MathSciNetCrossRefMATH Murray J, Kreutz-Delgado K (2007) Visual recognition and inference using dynamic overcomplete sparse learning. Neural Comput 19(9):2301MathSciNetCrossRefMATH
40.
go back to reference Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209(1–2):237–260MathSciNetCrossRefMATH Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209(1–2):237–260MathSciNetCrossRefMATH
41.
go back to reference Donoho D (2006) For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetCrossRefMATH Donoho D (2006) For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetCrossRefMATH
42.
go back to reference Xu Y, Fang X, Wu J, Li X, Zhang D (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863MathSciNetCrossRefMATH Xu Y, Fang X, Wu J, Li X, Zhang D (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863MathSciNetCrossRefMATH
43.
go back to reference Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122CrossRefMATH Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122CrossRefMATH
44.
go back to reference Cai J, Cands E, Shen Z (2008) A singular value thresholding algorithm for matrix completion. Siam J Optim 20(4):1956–1982MathSciNetCrossRef Cai J, Cands E, Shen Z (2008) A singular value thresholding algorithm for matrix completion. Siam J Optim 20(4):1956–1982MathSciNetCrossRef
45.
go back to reference Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRef Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRef
46.
go back to reference Martinez A (1998) The AR face database. Cvc Technical Report, 24 Martinez A (1998) The AR face database. Cvc Technical Report, 24
47.
go back to reference Nene S, Nayar S, Murase H (1996) Columbia object image library (COIL-100). Columbia University Nene S, Nayar S, Murase H (1996) Columbia object image library (COIL-100). Columbia University
Metadata
Title
Joint sparse representation and locality preserving projection for feature extraction
Authors
Wei Zhang
Peipei Kang
Xiaozhao Fang
Luyao Teng
Na Han
Publication date
20-06-2018
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 7/2019
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-018-0849-y

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue