Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 9/2014

01-09-2014 | Original Article

Joint-specific distance thresholds for patient-specific approximations of articular cartilage modeling in the first ray of the foot

Authors: G. L. S. Marchelli, W. R. Ledoux, V. Isvilanonda, M. A. Ganter, D. W. Storti

Published in: Medical & Biological Engineering & Computing | Issue 9/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The addition of cartilage elements in a finite element model prevents bone-on-bone articulation during simulation, thus providing more accurate information about joint kinematics. We present a semi-automated method for identifying joint articulation surfaces and creating volumetric articular cartilage elements based on patient-specific bone information. The approach identifies contact surfaces based on a joint-specific, user-specified distance threshold criterion applied to a polygonized set of bones. Volumetric cartilage elements are generated using half of the minimum inter-joint distance. We present the method and then apply it to the first ray of the human foot, which includes the medial cuneiform, first metatarsal, and first proximal and distal phalanges. Distance thresholds for the first ray ranged from 3.0 to 4.25 mm depending on the joint and the desired contact surface coverage. Inter-joint distances were found and applied to the contact surfaces to generate uniformly thick cartilage models. Average inter-joint distances of 0.46, 0.72 and 0.51 mm were found for the first interphalangeal, metatarsophalangeal, and cuneometatarsal joints, respectively. The values cited are one half of the minimum inter-joint difference, as identified by the proximity algorithm. This is taken to represent the (uniform) cartilage thickness at each joint.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP, Tochigi Y, Marsh JL, Brown TD (2006) Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol 5(2–3):82–89PubMedCentralPubMedCrossRef Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP, Tochigi Y, Marsh JL, Brown TD (2006) Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol 5(2–3):82–89PubMedCentralPubMedCrossRef
2.
go back to reference Anderson DD, Goldsworthy JK, Li W, Rudert MJ, Tochigi Y, Brown TD (2007) Physical validation of a patient-specific contact finite element model of the ankle. J Biomech 40(8):1662–1669PubMedCentralPubMedCrossRef Anderson DD, Goldsworthy JK, Li W, Rudert MJ, Tochigi Y, Brown TD (2007) Physical validation of a patient-specific contact finite element model of the ankle. J Biomech 40(8):1662–1669PubMedCentralPubMedCrossRef
3.
go back to reference Athanasiou KA, Liu GT, Lavery LA, Lanctot DR, Schenck RC (1998) Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop Rel Res 348:269–281CrossRef Athanasiou KA, Liu GT, Lavery LA, Lanctot DR, Schenck RC (1998) Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop Rel Res 348:269–281CrossRef
4.
go back to reference Baerentzen JA, Aanaes H (2005) Signed distance computation using the angle weighted pseudonormal. IEEE Trans Visual Comput Graph 11(3):243–253CrossRef Baerentzen JA, Aanaes H (2005) Signed distance computation using the angle weighted pseudonormal. IEEE Trans Visual Comput Graph 11(3):243–253CrossRef
5.
go back to reference Baerentzen JA, Henrik A (2002) Generating signed distance fields from triangle meshes. IMM Technical University of Denmark, Denmark Baerentzen JA, Henrik A (2002) Generating signed distance fields from triangle meshes. IMM Technical University of Denmark, Denmark
6.
go back to reference Budhabhatti SP, Erdemir A, Petre M, Sferra J, Donley B, Cavanagh P (2007) Finite element modeling of the first ray of the foot: a tool for the design of interventions. J Biomech Eng 129(5):750–756PubMedCrossRef Budhabhatti SP, Erdemir A, Petre M, Sferra J, Donley B, Cavanagh P (2007) Finite element modeling of the first ray of the foot: a tool for the design of interventions. J Biomech Eng 129(5):750–756PubMedCrossRef
7.
go back to reference Camacho D, Ledoux W, Rohr E, Sangeorzan B, Ching R (2002) A three-dimensional, anatomically detailed foot model: a foundation for a finite element simulation and means of quantifying foot-bone position. J Rehabil Res Dev 39(3):401–410PubMed Camacho D, Ledoux W, Rohr E, Sangeorzan B, Ching R (2002) A three-dimensional, anatomically detailed foot model: a foundation for a finite element simulation and means of quantifying foot-bone position. J Rehabil Res Dev 39(3):401–410PubMed
8.
go back to reference Carrigan SD, Whiteside RA, Pichora DR, Small CF (2003) Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann Biomed Eng 31(6):718–725PubMedCrossRef Carrigan SD, Whiteside RA, Pichora DR, Small CF (2003) Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann Biomed Eng 31(6):718–725PubMedCrossRef
9.
go back to reference Chen WM, Lee T, Lee PVS, Lee JW, Lee SJ (2010) Effects of internal stress concentrations in plantar soft-tissue-A preliminary three-dimensional finite element analysis. Med Eng Phys 32(4):324–331PubMedCrossRef Chen WM, Lee T, Lee PVS, Lee JW, Lee SJ (2010) Effects of internal stress concentrations in plantar soft-tissue-A preliminary three-dimensional finite element analysis. Med Eng Phys 32(4):324–331PubMedCrossRef
10.
go back to reference Cheung JT, Zhang M (2005) A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil 86(2):353–358PubMedCrossRef Cheung JT, Zhang M (2005) A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil 86(2):353–358PubMedCrossRef
11.
go back to reference Cheung JT, Zhang M, An KN (2006) Effect of achilles tendon loading on plantar fascia tension in the standing foot. Clin Biomech 21(2):194–203CrossRef Cheung JT, Zhang M, An KN (2006) Effect of achilles tendon loading on plantar fascia tension in the standing foot. Clin Biomech 21(2):194–203CrossRef
12.
go back to reference Dengler EDW (2008) A finite element model of the human foot and ankle. PhD Thesis, University of Washington, Seattle, WA Dengler EDW (2008) A finite element model of the human foot and ankle. PhD Thesis, University of Washington, Seattle, WA
13.
go back to reference Fowler MM, Jamriska DJ (1993) Determination of the ratio of sr-82 to sr-85 by high-resolution gamma-ray counting. Abstr Pap Am Chem Soc 205:70 Fowler MM, Jamriska DJ (1993) Determination of the ratio of sr-82 to sr-85 by high-resolution gamma-ray counting. Abstr Pap Am Chem Soc 205:70
14.
go back to reference Garcia-Aznar JM, Bayod J, Rosas A, Larrainzar R, Garcia-Bogalo R, Doblare M, Llanos LF (2009) Load transfer mechanism for different metatarsal geometries: a finite element study. J Biomech Eng 131(2):0210111–0210117 Garcia-Aznar JM, Bayod J, Rosas A, Larrainzar R, Garcia-Bogalo R, Doblare M, Llanos LF (2009) Load transfer mechanism for different metatarsal geometries: a finite element study. J Biomech Eng 131(2):0210111–0210117
15.
16.
go back to reference Gilbert SL, Moore DC, Case JA, Crisco JJ (2009) Quantification of carpal cartilage facet morphology using micro-CT. In: 55th Annual meeting of the orthopaedic research society, Las Vegas, NV. Poster No. 1157 Gilbert SL, Moore DC, Case JA, Crisco JJ (2009) Quantification of carpal cartilage facet morphology using micro-CT. In: 55th Annual meeting of the orthopaedic research society, Las Vegas, NV. Poster No. 1157
17.
go back to reference Grosland NM, Brown TD (2002) A voxel-based formulation for contact finite element analysis. Comput Methods Biomech Biomed Eng 5(1):21–32CrossRef Grosland NM, Brown TD (2002) A voxel-based formulation for contact finite element analysis. Comput Methods Biomech Biomed Eng 5(1):21–32CrossRef
18.
go back to reference Han SK, Federico S, Epstein M, Herzog W (2005) An articular cartilage contact model based on real surface geometry. J Biomech 38(1):179–184PubMedCrossRef Han SK, Federico S, Epstein M, Herzog W (2005) An articular cartilage contact model based on real surface geometry. J Biomech 38(1):179–184PubMedCrossRef
19.
go back to reference Harrysson OL, Hosni YA, Nayfeh JF (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8:91PubMedCentralPubMedCrossRef Harrysson OL, Hosni YA, Nayfeh JF (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8:91PubMedCentralPubMedCrossRef
20.
go back to reference Ledoux WR, Camacho D, Ching R, Sangeorzan B (2000) The development and validation of a computational foot and ankle model. In: Proceedings of the 22nd annual international conference of the IEE, vol 4, Engineering in Medicine and Biology Society, Chicago, IL, pp 2899–2902 Ledoux WR, Camacho D, Ching R, Sangeorzan B (2000) The development and validation of a computational foot and ankle model. In: Proceedings of the 22nd annual international conference of the IEE, vol 4, Engineering in Medicine and Biology Society, Chicago, IL, pp 2899–2902
21.
go back to reference Ledoux WR, Dengler EDW, Fassbind MJ (2008) A finite element foot model for simulating muscle imbalances. In: Proceedings of the 1st international foot and ankle biomechanics congress, Bologna, Italy Ledoux WR, Dengler EDW, Fassbind MJ (2008) A finite element foot model for simulating muscle imbalances. In: Proceedings of the 1st international foot and ankle biomechanics congress, Bologna, Italy
22.
go back to reference Marai GE, Crisco JJ, Laidlaw DH (2006) A kinematics-based method for generating cartilage maps and deformations in the multi-articulating wrist joint from CT images. Conf Proc IEEE Eng Med Biol Soc 1:2079–2082PubMedCentralPubMedCrossRef Marai GE, Crisco JJ, Laidlaw DH (2006) A kinematics-based method for generating cartilage maps and deformations in the multi-articulating wrist joint from CT images. Conf Proc IEEE Eng Med Biol Soc 1:2079–2082PubMedCentralPubMedCrossRef
23.
go back to reference Marchelli GLS, Ledoux WR, Ganter MA, Storti DW (2011) An automated method for creation of patient-specific volumetric articular cartilage elements in the human foot. In: The design of medical devices conference, Minneapolis, MN Marchelli GLS, Ledoux WR, Ganter MA, Storti DW (2011) An automated method for creation of patient-specific volumetric articular cartilage elements in the human foot. In: The design of medical devices conference, Minneapolis, MN
25.
go back to reference Sarrafian SK (1993) Anatomy of the foot and Ankle: descriptive, topographic, functional. J.B. Lippincott, Philadelphia Sarrafian SK (1993) Anatomy of the foot and Ankle: descriptive, topographic, functional. J.B. Lippincott, Philadelphia
26.
go back to reference Séquin CH (1987) Procedural spline interpolation in UNICUBIX. University of California, Computer Science Division, Berkeley Séquin CH (1987) Procedural spline interpolation in UNICUBIX. University of California, Computer Science Division, Berkeley
27.
go back to reference Thürmer G, Wüthrich CA (1998) Computing vertex normals from polygonal facets. J Graph Tools 3(1):43–46CrossRef Thürmer G, Wüthrich CA (1998) Computing vertex normals from polygonal facets. J Graph Tools 3(1):43–46CrossRef
Metadata
Title
Joint-specific distance thresholds for patient-specific approximations of articular cartilage modeling in the first ray of the foot
Authors
G. L. S. Marchelli
W. R. Ledoux
V. Isvilanonda
M. A. Ganter
D. W. Storti
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 9/2014
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-014-1179-1

Other articles of this Issue 9/2014

Medical & Biological Engineering & Computing 9/2014 Go to the issue

Premium Partner