Skip to main content
Top

2020 | OriginalPaper | Chapter

JointVesselNet: Joint Volume-Projection Convolutional Embedding Networks for 3D Cerebrovascular Segmentation

Authors : Yifan Wang, Guoli Yan, Haikuan Zhu, Sagar Buch, Ying Wang, Ewart Mark Haacke, Jing Hua, Zichun Zhong

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present an end-to-end deep learning method, JointVesselNet, for robust extraction of 3D sparse vascular structure through embedding the image composition, generated by maximum intensity projection (MIP), into the 3D magnetic resonance angiography (MRA) volumetric image learning process to enhance the overall performance. The MIP embedding features can strengthen the local vessel signal and adapt to the geometric variability and scalability of vessels. Therefore, the proposed framework can better capture the small vessels and improve the vessel connectivity. To our knowledge, this is the first time that a deep learning framework is proposed to construct a joint convolutional embedding space, where the computed joint vessel probabilities from 2D projection and 3D volume can be integrated synergistically. Experimental results are evaluated and compared with the traditional 3D vessel segmentation methods and the state-of-the-art in deep learning, by using both public and real patient cerebrovascular image datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brown, W., Thore, C.: Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37(1), 56–74 (2011)CrossRef Brown, W., Thore, C.: Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37(1), 56–74 (2011)CrossRef
2.
go back to reference Dorr, A., Sahota, B., et al.: Amyloid-\(\beta \)-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. Brain 135(10), 3039–3050 (2012)CrossRef Dorr, A., Sahota, B., et al.: Amyloid-\(\beta \)-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. Brain 135(10), 3039–3050 (2012)CrossRef
3.
go back to reference Gouw, A., Seewann, A., Van Der Flier, W., Barkhof, F., et al.: Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 82(2), 126–135 (2011)CrossRef Gouw, A., Seewann, A., Van Der Flier, W., Barkhof, F., et al.: Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 82(2), 126–135 (2011)CrossRef
4.
go back to reference Mott, M., Pahigiannis, K., Koroshetz, W.: Small blood vessels: big health problems: national institute of neurological disorders and stroke update. Stroke 45(12), e257–e258 (2014)CrossRef Mott, M., Pahigiannis, K., Koroshetz, W.: Small blood vessels: big health problems: national institute of neurological disorders and stroke update. Stroke 45(12), e257–e258 (2014)CrossRef
5.
go back to reference Frangi, A., Niessen, W., et al.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137 (1998) Frangi, A., Niessen, W., et al.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137 (1998)
6.
go back to reference Martínez-Pérez, M., et al.: Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 90–97 (1999) Martínez-Pérez, M., et al.: Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 90–97 (1999)
7.
go back to reference Nain, D., Yezzi, A., Turk, G.: Vessel segmentation using a shape driven flow. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 51–59 (2004) Nain, D., Yezzi, A., Turk, G.: Vessel segmentation using a shape driven flow. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 51–59 (2004)
8.
go back to reference Chung, A., et al.: Statistical 3D vessel segmentation using a Rician distribution. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 82–89 (1999) Chung, A., et al.: Statistical 3D vessel segmentation using a Rician distribution. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 82–89 (1999)
9.
go back to reference Liao, W., Rohr, K., Wörz, S.: Globally optimal curvature-regularized fast marching for vessel segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 550–557 (2013) Liao, W., Rohr, K., Wörz, S.: Globally optimal curvature-regularized fast marching for vessel segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 550–557 (2013)
10.
go back to reference Florin, C., Paragios, N., Williams, J.: Globally optimal active contours, sequential Monte Carlo and on-line learning for vessel segmentation. In: European Conference on Computer Vision, pp. 476–489 (2006) Florin, C., Paragios, N., Williams, J.: Globally optimal active contours, sequential Monte Carlo and on-line learning for vessel segmentation. In: European Conference on Computer Vision, pp. 476–489 (2006)
11.
go back to reference Descoteaux, M., Collins, D., Siddiqi, K.: A geometric flow for segmenting vasculature in proton-density weighted MRI. Med. Image Anal. 12(4), 497–513 (2008)CrossRef Descoteaux, M., Collins, D., Siddiqi, K.: A geometric flow for segmenting vasculature in proton-density weighted MRI. Med. Image Anal. 12(4), 497–513 (2008)CrossRef
12.
go back to reference Wang, S., et al.: Sequential Monte Carlo tracking for marginal artery segmentation on CT angiography by multiple cue fusion. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 518–525 (2013) Wang, S., et al.: Sequential Monte Carlo tracking for marginal artery segmentation on CT angiography by multiple cue fusion. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 518–525 (2013)
13.
go back to reference Forkert, N., et al.: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magn. Reson. Imaging 31(2), 262–271 (2013)CrossRef Forkert, N., et al.: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magn. Reson. Imaging 31(2), 262–271 (2013)CrossRef
14.
go back to reference Fu, H., Xu, Y., Lin, S., Wong, D., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 132–139 (2016) Fu, H., Xu, Y., Lin, S., Wong, D., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 132–139 (2016)
15.
go back to reference Li, Q., Feng, B., Xie, L., et al.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2015)CrossRef Li, Q., Feng, B., Xie, L., et al.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2015)CrossRef
16.
go back to reference Mo, J., Zhang, L.: Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 12(12), 2181–2193 (2017)CrossRef Mo, J., Zhang, L.: Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 12(12), 2181–2193 (2017)CrossRef
17.
go back to reference Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)CrossRef Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)CrossRef
18.
go back to reference Shin, S., Lee, S., Yun, I., Lee, K.: Deep vessel segmentation by learning graphical connectivity. Med. Image Anal. 58, 101556 (2019)CrossRef Shin, S., Lee, S., Yun, I., Lee, K.: Deep vessel segmentation by learning graphical connectivity. Med. Image Anal. 58, 101556 (2019)CrossRef
19.
go back to reference Sanchesa, P., et al.: Cerebrovascular network segmentation of MRA images with deep learning. In: IEEE International Symposium on Biomedical Imaging, pp. 768–771 (2019) Sanchesa, P., et al.: Cerebrovascular network segmentation of MRA images with deep learning. In: IEEE International Symposium on Biomedical Imaging, pp. 768–771 (2019)
20.
go back to reference Çiçek, Ö., et al.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432 (2016) Çiçek, Ö., et al.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432 (2016)
21.
go back to reference Szegedy, C., et al.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: The AAAI Conference on Artificial Intelligence (2017) Szegedy, C., et al.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: The AAAI Conference on Artificial Intelligence (2017)
22.
go back to reference Tetteh, G., et al.: DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3D angiographic volumes. arXiv preprint arXiv:1803.09340 (2018) Tetteh, G., et al.: DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3D angiographic volumes. arXiv preprint arXiv:​1803.​09340 (2018)
23.
go back to reference Kitrungrotsakul, T., et al.: VesselNet: a deep convolutional neural network with multi pathways for robust hepatic vessel segmentation. Comput. Med. Imaging Graph. 75, 74–83 (2019)CrossRef Kitrungrotsakul, T., et al.: VesselNet: a deep convolutional neural network with multi pathways for robust hepatic vessel segmentation. Comput. Med. Imaging Graph. 75, 74–83 (2019)CrossRef
24.
go back to reference Napel, S., et al.: CT angiography with spiral CT and maximum intensity projection. Radiology 185(2), 607–610 (1992)CrossRef Napel, S., et al.: CT angiography with spiral CT and maximum intensity projection. Radiology 185(2), 607–610 (1992)CrossRef
25.
go back to reference Ye, Y., Hu, J., Wu, D., Haacke, E.: Noncontrast-enhanced magnetic resonance angiography and venography imaging with enhanced angiography. J. Magn. Reson. Imaging 38(6), 1539–1548 (2013)CrossRef Ye, Y., Hu, J., Wu, D., Haacke, E.: Noncontrast-enhanced magnetic resonance angiography and venography imaging with enhanced angiography. J. Magn. Reson. Imaging 38(6), 1539–1548 (2013)CrossRef
26.
go back to reference Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015) Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)
27.
go back to reference Jenkinson, M., et al.: BET2: MR-based estimation of brain, skull and scalp surfaces. In: Eleventh Annual Meeting of the Organization for Human Brain Mapping (2005) Jenkinson, M., et al.: BET2: MR-based estimation of brain, skull and scalp surfaces. In: Eleventh Annual Meeting of the Organization for Human Brain Mapping (2005)
Metadata
Title
JointVesselNet: Joint Volume-Projection Convolutional Embedding Networks for 3D Cerebrovascular Segmentation
Authors
Yifan Wang
Guoli Yan
Haikuan Zhu
Sagar Buch
Ying Wang
Ewart Mark Haacke
Jing Hua
Zichun Zhong
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59725-2_11

Premium Partner