Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

26-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

K-DBSCAN: An improved DBSCAN algorithm for big data

Journal:
The Journal of Supercomputing > Issue 6/2021
Authors:
Nahid Gholizadeh, Hamid Saadatfar, Nooshin Hanafi
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11227-020-03524-3) contains supplementary material, which is available to authorised users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Big data storage and processing are among the most important challenges now. Among data mining algorithms, DBSCAN is a common clustering method. One of the most important drawbacks of this algorithm is its low execution speed. This study aims to accelerate the DBSCAN execution speed so that the algorithm can respond to big datasets in an acceptable period of time. To overcome the problem, an initial grouping was applied to the data in this article through the K-means++ algorithm. DBSCAN was then employed to perform clustering in each group separately. As a result, the computational burden of DBSCAN execution reduced and the clustering execution speed increased significantly. Finally, border clusters were merged if necessary. According to the results of executing the proposed algorithm, it managed to greatly reduce the DBSCAN execution time (98% in the best-case scenario) with no significant changes in the qualitative evaluation criteria for clustering.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits