Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-11-2018 | Focus | Issue 19/2019

Soft Computing 19/2019

K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor

Journal:
Soft Computing > Issue 19/2019
Authors:
N. Arunkumar, Mazin Abed Mohammed, Mohd Khanapi Abd Ghani, Dheyaa Ahmed Ibrahim, Enas Abdulhay, Gustavo Ramirez-Gonzalez, Victor Hugo C. de Albuquerque
Important notes
Communicated by A. K. Sangaiah, H. Pham, M.-Y. Chen, H. Lu, F. Mercaldo.

Abstract

Brain tumor diagnosis is a challenging and difficult process in view of the assortment of conceivable shapes, regions, and image intensities. The pathological detection and identification of brain tumor and comparison among normal and abnormal tissues need grouped scientific techniques for features extraction, displaying, and measurement of the disease images. Our study shows an improved automated brain tumor segmentation and identification approach using ANN from MR images without human mediation by applying the best attributes toward preparatory brain tumor case revelation. To obtain the exact district region of brain tumor from MR images, we propose a brain tumor segmentation technique that has three noteworthy improvement focuses. To begin with, K-means clustering will be utilized as a part of the principal organization in the process of improving the MR image to be marked in the districts regions in light of their gray scale. Second, ANN is utilized to choose the correct object in view of training phase. Third, texture feature of brain tumor area will be extracted to the division stage. With respect to the brain tumor identification, the grayscale features are utilized to analyze and diagnose the brain tumor to differentiate the benign and malignant cases. According to the study results demonstrated that: (1) enhancement adaptive strategy was utilized as post-processing in brain tumor identification; (2) identify and build an assessment foundation of automated segmentation and identification for brain tumor cases; (3) highlight the methods based on region growing method and K-means clustering technique to select the best region; and (4) evaluate the proficiency of the foreseen outcomes by comparing ANN and SVM segmentation outcomes, and brain tumor cases classification. The ANN approach classifier recorded accuracy of 94.07% with line assumption (brain tumor cases classification) and sensitivity of 90.09% and specificity of 96.78%.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 19/2019

Soft Computing 19/2019 Go to the issue

Premium Partner

    Image Credits