Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

K41 Versus K62: Recent Developments

Authors : R. A. Antonia, S. L. Tang, L. Danaila, L. Djenidi, Y. Zhou

Published in: Fluid-Structure-Sound Interactions and Control

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For the past 50 years or so, Kolmogorov’s (1962) correction (K62) to his 1941 hypotheses (K41) has been embraced by an overwhelming majority of turbulence researchers. Our recent work suggests that there are no valid reasons for abandoning K41. In particular, analytical considerations, based on the NS equations, which take into account the finite Reynolds number (FRN) effect, together with the available experimental laboratory data, seem to confirm a tendency towards the simple and elegant predictions of K41 as the Reynolds number increases. This is especially true when the focus is on the length scales which lie in the dissipative range. Incorrectly accounting for the FRN effect and the inclusion of the atmospheric surface layer (ASL) data, likely to have been affected by the proximity to the surface, appear to be the major factors which have contributed to a nearly unchallenged acceptance of K62.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Taylor GI (1935) Statistical theory of turbulence. Proc R Soc Lond A 151:421–444CrossRef Taylor GI (1935) Statistical theory of turbulence. Proc R Soc Lond A 151:421–444CrossRef
2.
go back to reference De Karman T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215CrossRef De Karman T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215CrossRef
3.
go back to reference Kolmogorov AN (1941) Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303MathSciNet Kolmogorov AN (1941) Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303MathSciNet
4.
go back to reference Kolmogorov AN (1941) Dissipation of energy in the locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21MathSciNetMATH Kolmogorov AN (1941) Dissipation of energy in the locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21MathSciNetMATH
5.
go back to reference Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85MathSciNetCrossRef Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85MathSciNetCrossRef
6.
7.
go back to reference Batchelor GK, Townsend AA (1947) Decay of vorticity in isotropic turbulence. Proc R Soc Lond A 190:534–550CrossRef Batchelor GK, Townsend AA (1947) Decay of vorticity in isotropic turbulence. Proc R Soc Lond A 190:534–550CrossRef
8.
go back to reference Batchelor GK, Townsend AA (1949) The nature of turbulent motion at large wave-numbers. Proc R Soc Lond A 199:238–255CrossRef Batchelor GK, Townsend AA (1949) The nature of turbulent motion at large wave-numbers. Proc R Soc Lond A 199:238–255CrossRef
10.
go back to reference Van Atta CW, Antonia RA (1980) Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys Fluids 23:252–257CrossRef Van Atta CW, Antonia RA (1980) Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys Fluids 23:252–257CrossRef
11.
12.
go back to reference Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press
13.
go back to reference Anselmet F, Antonia RA, Danaila L (2001) Turbulent flows and intermittency in laboratory experiments. Planet Sp Sci 49:1177–1191CrossRef Anselmet F, Antonia RA, Danaila L (2001) Turbulent flows and intermittency in laboratory experiments. Planet Sp Sci 49:1177–1191CrossRef
14.
go back to reference Ishihara T, Gotoh T, Kaneda Y (2009) Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Ann Rev Fluid Mech 41:165–180MathSciNetCrossRef Ishihara T, Gotoh T, Kaneda Y (2009) Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Ann Rev Fluid Mech 41:165–180MathSciNetCrossRef
15.
go back to reference Frisch U (1995) Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press Frisch U (1995) Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press
16.
go back to reference Qian J (1994) Skewness factor of turbulent velocity derivative. Acta Mech Sin 10:12–15CrossRef Qian J (1994) Skewness factor of turbulent velocity derivative. Acta Mech Sin 10:12–15CrossRef
17.
go back to reference Grossmann S, Lohse D (1994) Scale resolved intermittency in turbulence. Phys Fluids 6:611–617CrossRef Grossmann S, Lohse D (1994) Scale resolved intermittency in turbulence. Phys Fluids 6:611–617CrossRef
18.
go back to reference Qian J (1998) Normal and anomalous scaling of turbulence. Phys Rev E 58:7325CrossRef Qian J (1998) Normal and anomalous scaling of turbulence. Phys Rev E 58:7325CrossRef
19.
go back to reference Anselmet F, Gagne Y, Hopfinger EJ, Antonia RA (1984) High-order velocity structure functions in turbulent shear flows. J Fluid Mech 140:63–89CrossRef Anselmet F, Gagne Y, Hopfinger EJ, Antonia RA (1984) High-order velocity structure functions in turbulent shear flows. J Fluid Mech 140:63–89CrossRef
20.
go back to reference Qian J (1997) Inertial range and the finite Reynolds number effect of turbulence. Phys Rev E 55:337–342CrossRef Qian J (1997) Inertial range and the finite Reynolds number effect of turbulence. Phys Rev E 55:337–342CrossRef
21.
go back to reference Qian J (1999) Slow decay of the finite Reynolds number effect of turbulence. Phys Rev E 60:3409CrossRef Qian J (1999) Slow decay of the finite Reynolds number effect of turbulence. Phys Rev E 60:3409CrossRef
22.
go back to reference Danaila L, Anselmet F, Zhou T, Antonia RA (1999) A generalization of Yaglom?s equation which accounts for the large-scale forcing in heated decaying turbulence. J Fluid Mech 391:359–372MathSciNetCrossRef Danaila L, Anselmet F, Zhou T, Antonia RA (1999) A generalization of Yaglom?s equation which accounts for the large-scale forcing in heated decaying turbulence. J Fluid Mech 391:359–372MathSciNetCrossRef
23.
go back to reference Lindborg E (1999) Correction to the four-fifths law due to variations of the dissipation. Phys Fluids 11:510CrossRef Lindborg E (1999) Correction to the four-fifths law due to variations of the dissipation. Phys Fluids 11:510CrossRef
24.
go back to reference Von Karman T, Lin CC (1949) On the concept of similiarity in the theory of isotropic turbulence. Rev Mod Phys 21:516CrossRef Von Karman T, Lin CC (1949) On the concept of similiarity in the theory of isotropic turbulence. Rev Mod Phys 21:516CrossRef
26.
go back to reference Antonia RA, Burattini P (2006) Approach to the 4/5 law in homogeneous isotropic turbulence. J Fluid Mech 550:175–184CrossRef Antonia RA, Burattini P (2006) Approach to the 4/5 law in homogeneous isotropic turbulence. J Fluid Mech 550:175–184CrossRef
27.
go back to reference Tchoufag J, Sagaut P, Cambon C (2012) Spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence. Phys Fluids 24:015107CrossRef Tchoufag J, Sagaut P, Cambon C (2012) Spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence. Phys Fluids 24:015107CrossRef
28.
go back to reference Wyngaard JC, Tennekes H (1970) Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys Fluids 13:1962–1969CrossRef Wyngaard JC, Tennekes H (1970) Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys Fluids 13:1962–1969CrossRef
29.
go back to reference Antonia RA, Tang SL, Djenidi L, Danaila L (2015) Boundedness of the velocity derivative skewness in various turbulent flows. J Fluid Mech 781:727–744MathSciNetCrossRef Antonia RA, Tang SL, Djenidi L, Danaila L (2015) Boundedness of the velocity derivative skewness in various turbulent flows. J Fluid Mech 781:727–744MathSciNetCrossRef
30.
go back to reference Tang SL, Antonia RA, Djenidi L, Abe H, Zhou T, Danaila L, Zhou Y (2015) Transport equation for the mean turbulent energy dissipation rate on the centreline of a fully developed channel flow. J Fluid Mech 777:151–177MathSciNetCrossRef Tang SL, Antonia RA, Djenidi L, Abe H, Zhou T, Danaila L, Zhou Y (2015) Transport equation for the mean turbulent energy dissipation rate on the centreline of a fully developed channel flow. J Fluid Mech 777:151–177MathSciNetCrossRef
31.
go back to reference Tang SL, Antonia RA, Djenidi L, Zhou Y (2015) Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. J Fluid Mech 784:109–129MathSciNetCrossRef Tang SL, Antonia RA, Djenidi L, Zhou Y (2015) Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. J Fluid Mech 784:109–129MathSciNetCrossRef
32.
go back to reference Antonia RA, Djenidi L, Danaila L, Tang SL (2017) Small scale turbulence and the finite Reynolds number effect. Phys Fluids 29:020715CrossRef Antonia RA, Djenidi L, Danaila L, Tang SL (2017) Small scale turbulence and the finite Reynolds number effect. Phys Fluids 29:020715CrossRef
33.
go back to reference Metzger M, McKeon BJ, Holmes H (2007) The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil Trans R Soc Lond A 365:859–876CrossRef Metzger M, McKeon BJ, Holmes H (2007) The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil Trans R Soc Lond A 365:859–876CrossRef
34.
go back to reference Djenidi L, Antonia RA, Talluru MK, Abe H (2017) Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Phys Rev Fluids 2:064608 Djenidi L, Antonia RA, Talluru MK, Abe H (2017) Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Phys Rev Fluids 2:064608
35.
go back to reference Sreenivasan KR, Dhruva B (1998) Is there scaling in high-Reynolds-number turbulence? Prog Theor Phys Suppl 130:103–120MathSciNetCrossRef Sreenivasan KR, Dhruva B (1998) Is there scaling in high-Reynolds-number turbulence? Prog Theor Phys Suppl 130:103–120MathSciNetCrossRef
36.
go back to reference Sheih CM, Tennekes H, Lumley JL (1971) Airborne hot-wire measurements of the small-scale structure of atmospheric turbulence. Phys Fluids 14:201–215CrossRef Sheih CM, Tennekes H, Lumley JL (1971) Airborne hot-wire measurements of the small-scale structure of atmospheric turbulence. Phys Fluids 14:201–215CrossRef
37.
go back to reference Grant HL, Stewart RW, Moilliet A (1962) Turbulence spectra from a tidal channel. J Fluid Mech 12:241–268CrossRef Grant HL, Stewart RW, Moilliet A (1962) Turbulence spectra from a tidal channel. J Fluid Mech 12:241–268CrossRef
38.
go back to reference Antonia RA, Zhou T, Danaila L, Anselmet F (2000) Streamwise inhomogeneity of decaying grid turbulence. Phys Fluids 12:3086CrossRef Antonia RA, Zhou T, Danaila L, Anselmet F (2000) Streamwise inhomogeneity of decaying grid turbulence. Phys Fluids 12:3086CrossRef
39.
go back to reference Thiesset F, Antonia RA, Djenidi L (2014) Consequences of self-preservation on the axis of a turbulent round jet. J Fluid Mech 748(R2) Thiesset F, Antonia RA, Djenidi L (2014) Consequences of self-preservation on the axis of a turbulent round jet. J Fluid Mech 748(R2)
40.
go back to reference Danaila L, Anselmet F, Zhou T, Antonia RA (2001) Turbulent energy scale-budget equations in a fully developed channel flow. J Fluid Mech 430:87–109CrossRef Danaila L, Anselmet F, Zhou T, Antonia RA (2001) Turbulent energy scale-budget equations in a fully developed channel flow. J Fluid Mech 430:87–109CrossRef
41.
go back to reference Antonia RA, Djenidi L, Danaila L (2014) Collapse of the turbulent dissipation range on Kolmogorov scales. Phys Fluids 26:045105CrossRef Antonia RA, Djenidi L, Danaila L (2014) Collapse of the turbulent dissipation range on Kolmogorov scales. Phys Fluids 26:045105CrossRef
42.
go back to reference Djenidi L, Tardu SF, Antonia RA, Danaila L (2014) Breakdown of Kolmogorov’s first similarity hypothesis in grid turbulence. J Turb 15:596–610CrossRef Djenidi L, Tardu SF, Antonia RA, Danaila L (2014) Breakdown of Kolmogorov’s first similarity hypothesis in grid turbulence. J Turb 15:596–610CrossRef
43.
go back to reference Pearson BR, Antonia RA (2001) Reynolds-number dependence of turbulent velocity and pressure increments. J Fluid Mech 444:343–382CrossRef Pearson BR, Antonia RA (2001) Reynolds-number dependence of turbulent velocity and pressure increments. J Fluid Mech 444:343–382CrossRef
44.
go back to reference Pope SB (2000) Turbulent flows. Cambridge University Press Pope SB (2000) Turbulent flows. Cambridge University Press
45.
go back to reference Bos WJT, Chevillard L, Scott JF, Rubinstein R (2012) Reynolds number effect on the velocity increment skewness in isotropic turbulence. Phys Fluids 24:015108CrossRef Bos WJT, Chevillard L, Scott JF, Rubinstein R (2012) Reynolds number effect on the velocity increment skewness in isotropic turbulence. Phys Fluids 24:015108CrossRef
46.
go back to reference Tsuji Y, Ishihara T (2003) Similarity scaling of pressure fluctuation in turbulence. Phys Rev E 68:026309CrossRef Tsuji Y, Ishihara T (2003) Similarity scaling of pressure fluctuation in turbulence. Phys Rev E 68:026309CrossRef
47.
go back to reference Meldi M, Sagaut P (2013) Pressure statistics in self-similar freely decaying isotropic turbulence. J Fluid Mech 717:R2CrossRef Meldi M, Sagaut P (2013) Pressure statistics in self-similar freely decaying isotropic turbulence. J Fluid Mech 717:R2CrossRef
48.
go back to reference Tang SL, Antonia RA, Djenidi L, Danaila L, Zhou Y (2017) Finite Reynolds number effect on the scaling range behavior of turbulent longitudinal velocity structure functions. J Fluid Mech 820:341–369MathSciNetCrossRef Tang SL, Antonia RA, Djenidi L, Danaila L, Zhou Y (2017) Finite Reynolds number effect on the scaling range behavior of turbulent longitudinal velocity structure functions. J Fluid Mech 820:341–369MathSciNetCrossRef
49.
go back to reference Djenidi L, Antonia RA, Danaila L, Tang SL (2017) A note on the velocity derivative flatness factor in decaying HIT. Phys Fluids 29:051702 Djenidi L, Antonia RA, Danaila L, Tang SL (2017) A note on the velocity derivative flatness factor in decaying HIT. Phys Fluids 29:051702
50.
go back to reference Tang SL, Antonia RA, Djenidi L, Danaila L, Zhou Y (2017) Reappraisal of the velocity derivative flatness factor in various turbulent flows. J Fluid Mech (in revision) Tang SL, Antonia RA, Djenidi L, Danaila L, Zhou Y (2017) Reappraisal of the velocity derivative flatness factor in various turbulent flows. J Fluid Mech (in revision)
Metadata
Title
K41 Versus K62: Recent Developments
Authors
R. A. Antonia
S. L. Tang
L. Danaila
L. Djenidi
Y. Zhou
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7542-1_1

Premium Partners