Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Kerr Microscopy Study of Magnetic Phase Transition in Fe49Rh51

Authors: T. A. Taaev, A. A. Amirov, A. M. Aliev, A. Chirkova, I. V. Soldatov, R. Schäfer

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

Magnetic phase transition in Fe49Rh51 was studied using wide-field Kerr microscopy. In zero magnetic field, temperature dependences of rotation of polarization plane on the sample surface are obtained. The analysis of the obtained data shows that the temperature of the AFM–FM phase transition is TN, heat = 323.5 K, and that of the reverse FM–AFM phase transition is TN, cool = 317 K. In a magnetic field of 0.5 T, the temperature hysteresis shifts to lower temperatures by 4 K. For the first time ever, the magnetic polar domains with a disordered labyrinthine shape are found on the sample surface.
Literature
1.
go back to reference D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, and P. Pirro, “The 2017 magnetism roadmap,” J. Phys. D: Appl. Phys. 50, 363001 (2017). CrossRef D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, and P. Pirro, “The 2017 magnetism roadmap,” J. Phys. D: Appl. Phys. 50, 363001 (2017). CrossRef
2.
go back to reference A. Zakharov, “Crystal lattice parameter and structural distortions in Fe-Rh alloy at phase transitions,” Fiz. Met. Metalloved. 24, 84–90 (1967). A. Zakharov, “Crystal lattice parameter and structural distortions in Fe-Rh alloy at phase transitions,” Fiz. Met. Metalloved. 24, 84–90 (1967).
3.
go back to reference S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990). CrossRef S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990). CrossRef
4.
go back to reference A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm 0.6Sr 0.4MnO 3,” Appl. Phys. Lett. 109, 202407 (2016). CrossRef A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm 0.6Sr 0.4MnO 3,” Appl. Phys. Lett. 109, 202407 (2016). CrossRef
5.
go back to reference E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.‑L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, and L. Mañosa, “Barocaloric and magnetocaloric effects in Fe49Rh51,” Phys. Rev. B 89, 214105 (2014). CrossRef E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.‑L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, and L. Mañosa, “Barocaloric and magnetocaloric effects in Fe49Rh51,” Phys. Rev. B 89, 214105 (2014). CrossRef
6.
go back to reference S. Nikitin, G. Myalikgulyev, M. Annaorazov, A. L. Tyurin, R. W. Myndyev, and S. A. Akopyan, “Giant elastocaloric effect in FeRh alloy,” Phys. Lett. A 171, 234–236 (1992). CrossRef S. Nikitin, G. Myalikgulyev, M. Annaorazov, A. L. Tyurin, R. W. Myndyev, and S. A. Akopyan, “Giant elastocaloric effect in FeRh alloy,” Phys. Lett. A 171, 234–236 (1992). CrossRef
7.
go back to reference S. Foner, “Vibrating sample magnetometer,” Rev. Sci. Instrum. 27 (7), 548 (1956). CrossRef S. Foner, “Vibrating sample magnetometer,” Rev. Sci. Instrum. 27 (7), 548 (1956). CrossRef
8.
go back to reference G. W. H. Hohne, W. F. Hemminger, and H. J. Flammersheim, Differential Scanning Calorimetry, 2nd ed. (Springer, Berlin, 2003). CrossRef G. W. H. Hohne, W. F. Hemminger, and H. J. Flammersheim, Differential Scanning Calorimetry, 2nd ed. (Springer, Berlin, 2003). CrossRef
9.
go back to reference A. Chirkova, F. Bittner, K. Nenkov, N. V. Baranov, L. Schultz, K. Nielsch, and T. G. Woodcock, “The effect of the microstructure on the antiferromagnetic to ferromagnetic transition in FeRh alloys,” Acta Mater. 131, 31–38 (2017). CrossRef A. Chirkova, F. Bittner, K. Nenkov, N. V. Baranov, L. Schultz, K. Nielsch, and T. G. Woodcock, “The effect of the microstructure on the antiferromagnetic to ferromagnetic transition in FeRh alloys,” Acta Mater. 131, 31–38 (2017). CrossRef
10.
go back to reference A. S. Komlev, D. Y. Karpenkov, D. A. Kiselev, T. S. Ilina, A. Chirkova, R. R. Gimaev, T. Usami, T. Taniyama, V. I. Zverev, and N. S. Perov, “Ferromagnetic phase nucleation and its growth evolution in FeRh thin films,” J. Alloys Compd. 874, 159924 (2021). CrossRef A. S. Komlev, D. Y. Karpenkov, D. A. Kiselev, T. S. Ilina, A. Chirkova, R. R. Gimaev, T. Usami, T. Taniyama, V. I. Zverev, and N. S. Perov, “Ferromagnetic phase nucleation and its growth evolution in FeRh thin films,” J. Alloys Compd. 874, 159924 (2021). CrossRef
11.
go back to reference V. I. Zverev, R. R. Gimaev, T. Miyanaga, A. A. Vaulin, A. F. Gubkin, B. B. Kovalev, A. M. dos Santos, E. Lovell, L. F. Cohen, and N. A. Zarkevich, “Peculiarities of the phase transformation dynamics in bulk FeRh based alloys from magnetic and structural measurements,” J. Magn. Magn. Mater. 522, 167560 (2021). CrossRef V. I. Zverev, R. R. Gimaev, T. Miyanaga, A. A. Vaulin, A. F. Gubkin, B. B. Kovalev, A. M. dos Santos, E. Lovell, L. F. Cohen, and N. A. Zarkevich, “Peculiarities of the phase transformation dynamics in bulk FeRh based alloys from magnetic and structural measurements,” J. Magn. Magn. Mater. 522, 167560 (2021). CrossRef
12.
go back to reference E. Mancini, F. Pressacco, M. Haertinger, E. E. Fullerton, T. Suzuki, G. Woltersdorf, and C. H. Back, “Magnetic phase transition in iron–rhodium thin films probed by ferromagnetic resonance,” J. Phys. D: Appl. Phys. 46, 245302 (2013). CrossRef E. Mancini, F. Pressacco, M. Haertinger, E. E. Fullerton, T. Suzuki, G. Woltersdorf, and C. H. Back, “Magnetic phase transition in iron–rhodium thin films probed by ferromagnetic resonance,” J. Phys. D: Appl. Phys. 46, 245302 (2013). CrossRef
13.
go back to reference A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 1998). A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 1998).
14.
go back to reference I. V. Soldatov and R. Schäfer, “Selective sensitivity in Kerr microscopy,” Rev. Sci. Instrum. 88, 073701 (2017). CrossRef I. V. Soldatov and R. Schäfer, “Selective sensitivity in Kerr microscopy,” Rev. Sci. Instrum. 88, 073701 (2017). CrossRef
15.
go back to reference A. A. Amirov, F. Cugini, A. P. Kamantsev, T. Gottschall, M. Solzi, A. M. Aliev, Yu. I. Spichkin, V. V. Koledov, and V. G. Shavrov, “Direct measurements of the magnetocaloric effect of Fe 49Rh 51 using the mirage effect,” J. Appl. Phys. 127, 233905 (2020). CrossRef A. A. Amirov, F. Cugini, A. P. Kamantsev, T. Gottschall, M. Solzi, A. M. Aliev, Yu. I. Spichkin, V. V. Koledov, and V. G. Shavrov, “Direct measurements of the magnetocaloric effect of Fe 49Rh 51 using the mirage effect,” J. Appl. Phys. 127, 233905 (2020). CrossRef
16.
go back to reference F. Schmidt, W. Rave, and A. Hubert, “Enhancement of magneto-optical domain observation by digital image processing,” IEEE Trans. Magn. 21 (5), 1596–1598 (1985). CrossRef F. Schmidt, W. Rave, and A. Hubert, “Enhancement of magneto-optical domain observation by digital image processing,” IEEE Trans. Magn. 21 (5), 1596–1598 (1985). CrossRef
Metadata
Title
Kerr Microscopy Study of Magnetic Phase Transition in Fe49Rh51
Authors
T. A. Taaev
A. A. Amirov
A. M. Aliev
A. Chirkova
I. V. Soldatov
R. Schäfer
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040123