Skip to main content
Top
Published in: Production Engineering 4-5/2016

02-09-2016 | Production Process

Keyhole stability during laser welding—part I: modeling and evaluation

Authors: Jörg Volpp, Frank Vollertsen

Published in: Production Engineering | Issue 4-5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The keyhole is a requirement in order to establish the energy efficient process of laser deep penetration welding. However, the process is highly unstable which results in unwanted pore and spatter formation. In order to avoid process defects, the physical effects in the keyhole have to be better understood to find ways for compensation. This work aims to describe the keyhole properties at different welding parameters for welding of aluminum (EN AW 1050) with the help of a semi-analytical model based on energy and pressure equations and differential equations. The resulting dynamic characteristics of different keyholes are evaluated with frequency analysis of optical observations during the welding process. The spring coefficient, that describes the radial pressure change at radius deviation, is a good indicator for the resulting keyhole dynamics. Dynamic behavior is influenced by the spatial laser intensity distribution, while higher frequencies at lower amplitudes are found at a Top Hat distribution compared to a Gaussian intensity profile.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hügel H, Graf T (2009) Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren. Vieweg+Teubner, StuttgartCrossRef Hügel H, Graf T (2009) Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren. Vieweg+Teubner, StuttgartCrossRef
2.
go back to reference Duley WW (1976) CO2 lasers: effects and applications. Academic, London, p 246 Duley WW (1976) CO2 lasers: effects and applications. Academic, London, p 246
3.
go back to reference Mizutani M, Katayama S (2003) Keyhole behavior and pressure distribution during laser irradiation on molten metal. In: Proceedings of the 22nd international congress on applications of lasers and electro-optics, Jacksonville Mizutani M, Katayama S (2003) Keyhole behavior and pressure distribution during laser irradiation on molten metal. In: Proceedings of the 22nd international congress on applications of lasers and electro-optics, Jacksonville
4.
go back to reference Zhang MJ, Chen GY, Zhou Y, Li SC, Deng H (2013) Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate. Appl Surf Sci 280:868–875CrossRef Zhang MJ, Chen GY, Zhou Y, Li SC, Deng H (2013) Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate. Appl Surf Sci 280:868–875CrossRef
5.
go back to reference Khan M, Romoli L, Dini G, Fiaschi M (2011) A simplified energy-based model for laser welding of ferritic stainless steels in overlap configurations. CIRP Ann Manuf Technol 60:215–218CrossRef Khan M, Romoli L, Dini G, Fiaschi M (2011) A simplified energy-based model for laser welding of ferritic stainless steels in overlap configurations. CIRP Ann Manuf Technol 60:215–218CrossRef
6.
go back to reference Schmidt M, Otto A, Kägeler C, Geiger M (2008) Analysis of YAG Laser lap-welding of zinc coated steel sheets. CIRP Ann Manuf Technol 57:213–216CrossRef Schmidt M, Otto A, Kägeler C, Geiger M (2008) Analysis of YAG Laser lap-welding of zinc coated steel sheets. CIRP Ann Manuf Technol 57:213–216CrossRef
7.
go back to reference Matsunawa A, Kim JD, Katayama S, Semak V (1996) Experimental and theoretical studies on keyhole dynamics in laser welding. In: Proceedings of the 15th international congress on application of lasers and electro-optics (ICALEO), LIA congress proceeding, vol 81, pp 58–67 Matsunawa A, Kim JD, Katayama S, Semak V (1996) Experimental and theoretical studies on keyhole dynamics in laser welding. In: Proceedings of the 15th international congress on application of lasers and electro-optics (ICALEO), LIA congress proceeding, vol 81, pp 58–67
8.
go back to reference Otto A, Koch H, Leitz KH, Schmidt M (2011) Numerical simulations—a versatile approach for better understanding dynamics in laser material processing. In: Physics procedia, vol 12, 11–20, World of Photonics Congress, Munich, Germany Otto A, Koch H, Leitz KH, Schmidt M (2011) Numerical simulations—a versatile approach for better understanding dynamics in laser material processing. In: Physics procedia, vol 12, 11–20, World of Photonics Congress, Munich, Germany
9.
go back to reference Zhao H, DebRoy T (2003) Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. J Appl Phys 93(12):10089–10096CrossRef Zhao H, DebRoy T (2003) Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. J Appl Phys 93(12):10089–10096CrossRef
10.
go back to reference Heider A, Stritt, P, Weber R, Graf T (2015) Comparing the amount of laser welding spatters resulting from different analysing methods. In: Proceedings of the 34th international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 607 Heider A, Stritt, P, Weber R, Graf T (2015) Comparing the amount of laser welding spatters resulting from different analysing methods. In: Proceedings of the 34th international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 607
11.
go back to reference Seto N, Katayama S, Matsunawa A (2000) Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys. Q J Jpn Weld Soc 18:243–255CrossRef Seto N, Katayama S, Matsunawa A (2000) Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys. Q J Jpn Weld Soc 18:243–255CrossRef
12.
go back to reference Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2013) Numerical simulation of electromagnetic melt control systems in high power laser beam welding. In: Proceedings of the 32nd international congress on application of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 401 Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2013) Numerical simulation of electromagnetic melt control systems in high power laser beam welding. In: Proceedings of the 32nd international congress on application of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 401
13.
go back to reference Fabbro R (2009) Limiting process for keyhole propagation during deep penetration laser welding. In: Proceedings of the 5th international congress on laser advanced materials processing (LAMP) Fabbro R (2009) Limiting process for keyhole propagation during deep penetration laser welding. In: Proceedings of the 5th international congress on laser advanced materials processing (LAMP)
14.
go back to reference Stol I, Martukanitz RP (2004) Laser welding with beam oscillation. US patent no. 6,740,845 Stol I, Martukanitz RP (2004) Laser welding with beam oscillation. US patent no. 6,740,845
15.
go back to reference Heider A, Stritt P, Hess A, Weber R, Graf T (2001) Process stabilization at welding copper by laser power modulation. Phys Procedia 12:81–87CrossRef Heider A, Stritt P, Hess A, Weber R, Graf T (2001) Process stabilization at welding copper by laser power modulation. Phys Procedia 12:81–87CrossRef
16.
go back to reference Li S, Chen G, Katayama S, Zhang Y (2014) Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding. Appl Surf Sci 303:481–488CrossRef Li S, Chen G, Katayama S, Zhang Y (2014) Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding. Appl Surf Sci 303:481–488CrossRef
17.
go back to reference Börner C, Dilger K, Rominger V, Harrer T, Krüssel T, Löwer T (2011) Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser. In: Proceedings of 31st international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1604 Börner C, Dilger K, Rominger V, Harrer T, Krüssel T, Löwer T (2011) Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser. In: Proceedings of 31st international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1604
18.
go back to reference Volpp J, Vollertsen F (2015) Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions. Prod Eng Res Dev 9(2):167–178CrossRef Volpp J, Vollertsen F (2015) Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions. Prod Eng Res Dev 9(2):167–178CrossRef
19.
go back to reference Kägeler C, Schmidt M (2012) Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets. Phys Procedia 39:447–453CrossRef Kägeler C, Schmidt M (2012) Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets. Phys Procedia 39:447–453CrossRef
20.
go back to reference Geiger M, Kägeler C, Schmidt M (2008) High-power laser welding of contaminated steel sheets. Prod Eng 2:235–240CrossRef Geiger M, Kägeler C, Schmidt M (2008) High-power laser welding of contaminated steel sheets. Prod Eng 2:235–240CrossRef
21.
go back to reference Hoffman J, Szymanski Z, Jakubowski J, Kolasa A (2002) Analysis of acoustic and optical signals used as a basis for controlling laser-welding processes. Weld Int 16(1):18–25CrossRef Hoffman J, Szymanski Z, Jakubowski J, Kolasa A (2002) Analysis of acoustic and optical signals used as a basis for controlling laser-welding processes. Weld Int 16(1):18–25CrossRef
22.
go back to reference Klassen M (2000) Prozessdynamik und resultierende Prozessinstabilitäten beim Laserstrahlschweißen von Aluminiumlegierungen. BIAS-Verl., Bremen (in German) Klassen M (2000) Prozessdynamik und resultierende Prozessinstabilitäten beim Laserstrahlschweißen von Aluminiumlegierungen. BIAS-Verl., Bremen (in German)
23.
go back to reference Li S et al (2014) Dynamic keyhole profile during high-power deep-penetration laser welding. J Mater Process Technol 214(3):565–570CrossRef Li S et al (2014) Dynamic keyhole profile during high-power deep-penetration laser welding. J Mater Process Technol 214(3):565–570CrossRef
24.
go back to reference Berger P, Hügel H, Graf T (2011) Understanding pore formation in laser beam welding. Phys Procedia 12:241–247CrossRef Berger P, Hügel H, Graf T (2011) Understanding pore formation in laser beam welding. Phys Procedia 12:241–247CrossRef
25.
go back to reference Katayama S, Kawahito Y, Mizutani M (2007) Plume behaviour and melt flows during laser and hybrid welding. In: Vollertsen F, Emmelmann C, Schmidt M, Otto A (eds) Lasers in manufacturing (LIM). Elsevier, Amsterdam, pp 265–272 Katayama S, Kawahito Y, Mizutani M (2007) Plume behaviour and melt flows during laser and hybrid welding. In: Vollertsen F, Emmelmann C, Schmidt M, Otto A (eds) Lasers in manufacturing (LIM). Elsevier, Amsterdam, pp 265–272
26.
go back to reference Fabbro R, Slimani S, Coste F, Briand F, Dlubak B, Loisel G (2006) Analysis of basic processes inside the keyhole during deep penetration Nd:YAG cw laser welding. In: Proceeding of the 25th international congress on applications of lasers and electro-optics (ICALEO) laser materials processing conference, paper 101 Fabbro R, Slimani S, Coste F, Briand F, Dlubak B, Loisel G (2006) Analysis of basic processes inside the keyhole during deep penetration Nd:YAG cw laser welding. In: Proceeding of the 25th international congress on applications of lasers and electro-optics (ICALEO) laser materials processing conference, paper 101
27.
go back to reference Volpp J, Freimann D (2013) Indirect measurement of keyhole pressure oscillations during laser deep penetration welding. In: Proceedings of the 32nd international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1301, pp 334–340 Volpp J, Freimann D (2013) Indirect measurement of keyhole pressure oscillations during laser deep penetration welding. In: Proceedings of the 32nd international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1301, pp 334–340
28.
go back to reference Solana P, Ocana J-L (1997) A mathematical model for penetration laser welding as a free-boundary problem. J Phys D Appl Phys 30:1300–1313CrossRef Solana P, Ocana J-L (1997) A mathematical model for penetration laser welding as a free-boundary problem. J Phys D Appl Phys 30:1300–1313CrossRef
29.
go back to reference Ki H, Mohanty P, Mazumder J (2002) Modeling of laser keyhole welding: Part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans 33A:1817–1830CrossRef Ki H, Mohanty P, Mazumder J (2002) Modeling of laser keyhole welding: Part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans 33A:1817–1830CrossRef
30.
go back to reference Andrews JG, Attey DR (1976) Hydrodynamic limit to penetration of a material by a high-power beam. J Phys D Appl Phys 9:2181–2194CrossRef Andrews JG, Attey DR (1976) Hydrodynamic limit to penetration of a material by a high-power beam. J Phys D Appl Phys 9:2181–2194CrossRef
31.
go back to reference Kroos J, Gratzke U, Simon G (1993) Towards a self-consistent model of the keyhole in penetration laser beam welding. J Phys D Appl Phys 26:474–480CrossRef Kroos J, Gratzke U, Simon G (1993) Towards a self-consistent model of the keyhole in penetration laser beam welding. J Phys D Appl Phys 26:474–480CrossRef
32.
go back to reference Klein T, Vicanek M, Simon G (1996) Forced oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 29:322–332CrossRef Klein T, Vicanek M, Simon G (1996) Forced oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 29:322–332CrossRef
33.
go back to reference Kroos J, Gratzke U, Vicanek M, Simon G (1993) Dynamic behavior of the keyhole in laser welding. J Phys D Appl Phys 26:481–486CrossRef Kroos J, Gratzke U, Vicanek M, Simon G (1993) Dynamic behavior of the keyhole in laser welding. J Phys D Appl Phys 26:481–486CrossRef
34.
go back to reference Klein T, Vicanek M, Kroos J, Decker I, Simon G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27:2023–2030CrossRef Klein T, Vicanek M, Kroos J, Decker I, Simon G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27:2023–2030CrossRef
35.
go back to reference Poprawe R (2005) Lasertechnik für die Fertigung—Grundlagen, Perspektiven und Beispiele für den innovativen Ingenieur. Springer, Heidelberg Poprawe R (2005) Lasertechnik für die Fertigung—Grundlagen, Perspektiven und Beispiele für den innovativen Ingenieur. Springer, Heidelberg
36.
go back to reference Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New YorkMATH Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New YorkMATH
37.
go back to reference Fabbro R, Slimani S, Coste F, Briand F (2007) Analysis of the various melt pool hydrodynamic regimes observed during cw Nd-Yag deep penetration laser welding. In: Proceedings of the 27th international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 802 Fabbro R, Slimani S, Coste F, Briand F (2007) Analysis of the various melt pool hydrodynamic regimes observed during cw Nd-Yag deep penetration laser welding. In: Proceedings of the 27th international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 802
38.
go back to reference Klemens PG (1976) Heat balance and flow conditions for electron beam and laser welding. J Appl Phys 47(5):2165–2174CrossRef Klemens PG (1976) Heat balance and flow conditions for electron beam and laser welding. J Appl Phys 47(5):2165–2174CrossRef
39.
go back to reference Clucas DAV, Ducharme R, Kapadia PD, Dowden JM, Steen WM (1995) A mathematical model of the flow within the keyhole during laser welding. In: Denny P, Miyamoto I, Mordike BL (eds) Proceedings of the ICALEO’95. Laser Institute of America, Orlando, pp 435–450 Clucas DAV, Ducharme R, Kapadia PD, Dowden JM, Steen WM (1995) A mathematical model of the flow within the keyhole during laser welding. In: Denny P, Miyamoto I, Mordike BL (eds) Proceedings of the ICALEO’95. Laser Institute of America, Orlando, pp 435–450
40.
go back to reference Matsunawa A, Semak V (1997) The simulation of front keyhole wall dynamics during laser welding. J Phys D Appl Phys 30:798–809CrossRef Matsunawa A, Semak V (1997) The simulation of front keyhole wall dynamics during laser welding. J Phys D Appl Phys 30:798–809CrossRef
41.
go back to reference Weberpals J-P (2010) Nutzen und Grenzen guter Fokussierbarkeit beim Laserschweißen. Dissertation, Herbert Utz Verlag GmbH, Stuttgart, University (in German) Weberpals J-P (2010) Nutzen und Grenzen guter Fokussierbarkeit beim Laserschweißen. Dissertation, Herbert Utz Verlag GmbH, Stuttgart, University (in German)
42.
go back to reference Pleteit H (2001) Analyse und Modellierung der Keyhole-Dynamik beim Laserstrahlschweißen von Aluminiumlegierungen. Dissertation Bremen, Univ. (in German) Pleteit H (2001) Analyse und Modellierung der Keyhole-Dynamik beim Laserstrahlschweißen von Aluminiumlegierungen. Dissertation Bremen, Univ. (in German)
43.
go back to reference Brands EA, Brook GB (1992) Smithells metals reference book. Butterworth-Heinemann, Oxford Brands EA, Brook GB (1992) Smithells metals reference book. Butterworth-Heinemann, Oxford
44.
go back to reference Geiger M, Leitz KH, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng 3(2):127–136CrossRef Geiger M, Leitz KH, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng 3(2):127–136CrossRef
45.
go back to reference Gatzen M, Thomy C, Vollertsen F (2012) Analytical investigation of the influence of the spatial laser beam intensity distribution on keyhole dynamics in laser beam welding. Lasers Eng 23(1–2):109–122 Gatzen M, Thomy C, Vollertsen F (2012) Analytical investigation of the influence of the spatial laser beam intensity distribution on keyhole dynamics in laser beam welding. Lasers Eng 23(1–2):109–122
46.
go back to reference MacCormack E, Mandelis A, Munidasa M, Farahbakhsh B, Sang H (1997) Measurements of thermal diffusivity of aluminum using frequency-scanned, transient, and rate window photothermal radiometry. Theory and experiment. Int J Thermophys 18(1):221–250CrossRef MacCormack E, Mandelis A, Munidasa M, Farahbakhsh B, Sang H (1997) Measurements of thermal diffusivity of aluminum using frequency-scanned, transient, and rate window photothermal radiometry. Theory and experiment. Int J Thermophys 18(1):221–250CrossRef
47.
go back to reference Windisch H (2006) Thermodynamik—Ein Lehrbuch für Ingenieure. Oldenbourg Wissenschaftsverlag GmbH, München Windisch H (2006) Thermodynamik—Ein Lehrbuch für Ingenieure. Oldenbourg Wissenschaftsverlag GmbH, München
48.
go back to reference Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Clarendon Press, Oxford Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Clarendon Press, Oxford
49.
go back to reference Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mater Rev 38(4):157–192CrossRef Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mater Rev 38(4):157–192CrossRef
50.
go back to reference Shcheglov P, Gumenyuk A, Gornushkin I, Rethmeier M (2011) Experimental investigation of the laser-plume interaction during high power fiber laser welding. In: Proceedings of the 31st international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1606 Shcheglov P, Gumenyuk A, Gornushkin I, Rethmeier M (2011) Experimental investigation of the laser-plume interaction during high power fiber laser welding. In: Proceedings of the 31st international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1606
51.
go back to reference Skupin J (2004) Nichtlinear dynamisches Modell zum Laserstrahlschweißen von Aluminiumlegierungen. Dissertation, Berichte aus der Lasertechnik, Shaker Verlag Aachen (in German) Skupin J (2004) Nichtlinear dynamisches Modell zum Laserstrahlschweißen von Aluminiumlegierungen. Dissertation, Berichte aus der Lasertechnik, Shaker Verlag Aachen (in German)
52.
go back to reference Boley M, Abt F, Weber R, Graf T (2013) X-ray and optical videography for 3D measurement of capillary and melt pool geometry in laser welding. Phys Procedia 41:481–488CrossRef Boley M, Abt F, Weber R, Graf T (2013) X-ray and optical videography for 3D measurement of capillary and melt pool geometry in laser welding. Phys Procedia 41:481–488CrossRef
53.
go back to reference Kaplan AFH, Westin EM, Wiklund G, Norman P (2008) Imaging in cooperation with modeling of selected defect mechanisms during fiber laser welding of stainless steel. In: Proceedings of the 28th international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1701 Kaplan AFH, Westin EM, Wiklund G, Norman P (2008) Imaging in cooperation with modeling of selected defect mechanisms during fiber laser welding of stainless steel. In: Proceedings of the 28th international congress on applications of lasers and electro-optics (ICALEO), LIA congress proceeding, paper 1701
54.
go back to reference Kaplan AFH (2011) Influence of the beam profile formulation when modeling fiber-guided laser welding. J Laser Appl 23(4):042005CrossRef Kaplan AFH (2011) Influence of the beam profile formulation when modeling fiber-guided laser welding. J Laser Appl 23(4):042005CrossRef
55.
go back to reference Binder HH (1999) Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart. ISBN 3-7776-0736-3 Binder HH (1999) Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart. ISBN 3-7776-0736-3
Metadata
Title
Keyhole stability during laser welding—part I: modeling and evaluation
Authors
Jörg Volpp
Frank Vollertsen
Publication date
02-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Production Engineering / Issue 4-5/2016
Print ISSN: 0944-6524
Electronic ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-016-0694-3

Other articles of this Issue 4-5/2016

Production Engineering 4-5/2016 Go to the issue

Premium Partners