Skip to main content
Top
Published in: Journal of Materials Science 19/2018

04-06-2018 | Mechanochemical Synthesis

Kinetics of mechanical activation of Al/CuO thermite

Authors: Andrey N. Streletskii, Igor’ V. Kolbanev, Galina A. Vorobieva, Alexander Yu. Dolgoborodov, Vladimir G. Kirilenko, Boris D. Yankovskii

Published in: Journal of Materials Science | Issue 19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The general aspects of the mechanical activation (MA) of Al/CuO thermite compositions based on micron-sized particles and nanopowders of the starting components have been analyzed using X-ray diffraction and hydrogen titration. The latter method has been employed to evaluate the amount of residual oxygen in CuO and Cu2O from the weight loss during heating in H2. The reactivity of the activated mixtures was assessed using DSC and TG in combination with mass spectrometric analysis. In addition, we have measured the ignition temperature, burning velocity, and brightness temperature of the reaction products. The results demonstrate that mechanical activation leads to the fragmentation of the components, mixture homogenization, and the formation of a composite, producing “weakly bound” oxygen in CuOn and causing partial reaction between the components. The total exothermic heat effect in DSC scans, burning velocity, and brightness temperature as functions of specific milling dose (D) have an extremum. The highest reactivity is observed near D = 2 kJ/g, where a sufficient defect density in the components and good mixture homogenization are ensured, but the degree of MA-induced conversion does not exceed 10%. The burning velocity then reaches 400–700 m/s, and the brightness temperature is 3400–3800 °C. The milling dose dependence of the self-ignition temperature has no extremum. The self-ignition temperature steadily decreases with increasing milling dose, even though the ignition knock “power” falls off. The use of nanoparticulate starting components does not appear reasonable.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dolgoborodov AYu, Makhov MN, Kolbanev IV, Streletskii AN (2004) Mechanically activated pyrotechnic composition, RF patent no. 2235085, Buyl. Izobr. no. 24 Dolgoborodov AYu, Makhov MN, Kolbanev IV, Streletskii AN (2004) Mechanically activated pyrotechnic composition, RF patent no. 2235085, Buyl. Izobr. no. 24
2.
go back to reference Dreizin EL, Schoenitz M (2009) Nano-composite energetic powders prepared by arrested reactive milling, US patent no. 7,524,355 B2 Dreizin EL, Schoenitz M (2009) Nano-composite energetic powders prepared by arrested reactive milling, US patent no. 7,524,355 B2
3.
go back to reference Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141–167CrossRef Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141–167CrossRef
4.
go back to reference Dolgoborodov AYu (2015) Mechanically activated oxidizer-fuel energetic composites. Combust Explos Shock Waves 51(1):86–99CrossRef Dolgoborodov AYu (2015) Mechanically activated oxidizer-fuel energetic composites. Combust Explos Shock Waves 51(1):86–99CrossRef
7.
go back to reference Thiruvengadathan R, Bezmelnitsyn A, Apperson S, Staley C, Redner P, Balas W, Nicolich S, Kapoor D, Gangopadhyay K, Gangopadhyay S (2011) Combustion characteristics of novel hybrid nanoenergetic formulations. Combust Flame 158(5):964–978CrossRef Thiruvengadathan R, Bezmelnitsyn A, Apperson S, Staley C, Redner P, Balas W, Nicolich S, Kapoor D, Gangopadhyay K, Gangopadhyay S (2011) Combustion characteristics of novel hybrid nanoenergetic formulations. Combust Flame 158(5):964–978CrossRef
8.
go back to reference Zachariah MR, Egan GC (2016) Mechanisms and microphysics of energy release pathways in nanoenergetic materials. In: Zarko V (eds) Energetic nanomaterials: synthesis, characterization, and application. Elsevier, New York City, pp 65–94CrossRef Zachariah MR, Egan GC (2016) Mechanisms and microphysics of energy release pathways in nanoenergetic materials. In: Zarko V (eds) Energetic nanomaterials: synthesis, characterization, and application. Elsevier, New York City, pp 65–94CrossRef
9.
go back to reference Ermoline A, Schoenitz M, Dreizin EL (2011) Reaction leading to ignition in fully dense nanocomposite Al-oxide systems. Combust Flame 158:1076–1083CrossRef Ermoline A, Schoenitz M, Dreizin EL (2011) Reaction leading to ignition in fully dense nanocomposite Al-oxide systems. Combust Flame 158:1076–1083CrossRef
10.
go back to reference Ermoline A, Stamatis D, Dreizin EL (2012) Low temperature exothermic reaction in fully dense Al–CuO nanocomposite powders. Thermochim Acta 527:52–58CrossRef Ermoline A, Stamatis D, Dreizin EL (2012) Low temperature exothermic reaction in fully dense Al–CuO nanocomposite powders. Thermochim Acta 527:52–58CrossRef
11.
go back to reference Baijot V, Mehdi D-R, Rossi C, Esteve A (2017) A multi-phase micro-kinetic model for simulating aluminum based thermite reactions. Combust Flame 180:10–19CrossRef Baijot V, Mehdi D-R, Rossi C, Esteve A (2017) A multi-phase micro-kinetic model for simulating aluminum based thermite reactions. Combust Flame 180:10–19CrossRef
12.
go back to reference DeLisio JB, Yi F, LaVan DA, Zachariah MR (2017) High heating rate reaction dynamics of Al/CuO nanolaminates by nanocalorimetry-coupled time of flight mass spectrometry. J Phys Chem C 121:2771–2777CrossRef DeLisio JB, Yi F, LaVan DA, Zachariah MR (2017) High heating rate reaction dynamics of Al/CuO nanolaminates by nanocalorimetry-coupled time of flight mass spectrometry. J Phys Chem C 121:2771–2777CrossRef
13.
go back to reference Poulston S, Parlett PM, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24:811–820CrossRef Poulston S, Parlett PM, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24:811–820CrossRef
14.
go back to reference Kim JY, Rodrigues JA, Hanson JC, Frenkel AI, Lee PL (2003) Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc 125:10684–10692CrossRef Kim JY, Rodrigues JA, Hanson JC, Frenkel AI, Lee PL (2003) Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc 125:10684–10692CrossRef
15.
go back to reference Rodriguez JA, Kim JY, Hanson JC, Perez M, Frenkel AI (2003) Reduction of CuO in H2: in situ time-resolved XRD studies. Catal Lett 85:247–254CrossRef Rodriguez JA, Kim JY, Hanson JC, Perez M, Frenkel AI (2003) Reduction of CuO in H2: in situ time-resolved XRD studies. Catal Lett 85:247–254CrossRef
16.
go back to reference Kirsch PD, Ekerdt JG (2001) Chemical and thermal reduction of thin film of copper(II) oxide and copper(I) oxide. J Appl Phys 90:4256–4264CrossRef Kirsch PD, Ekerdt JG (2001) Chemical and thermal reduction of thin film of copper(II) oxide and copper(I) oxide. J Appl Phys 90:4256–4264CrossRef
17.
go back to reference Firmansyah DA, Kim T, Kim S, Sullivan K, Zachariah MR, Lee D (2009) Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis. Langmuir 25:7063–7071CrossRef Firmansyah DA, Kim T, Kim S, Sullivan K, Zachariah MR, Lee D (2009) Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis. Langmuir 25:7063–7071CrossRef
18.
go back to reference Streletskii AN (1993) Measurements and calculation of main parameters of power mechanical treatment in different mills. In: de Barbadillo JJ, Froes FH, Schwarz R (eds) Proceedings of the 2nd international conference on structural application of mechanical alloying, Vancouver, Canada, 20–22 September 1993. ASM International, Materials Park, pp 51–58 Streletskii AN (1993) Measurements and calculation of main parameters of power mechanical treatment in different mills. In: de Barbadillo JJ, Froes FH, Schwarz R (eds) Proceedings of the 2nd international conference on structural application of mechanical alloying, Vancouver, Canada, 20–22 September 1993. ASM International, Materials Park, pp 51–58
19.
go back to reference Vanysek P (2000) Electrochemical series/handbook of chemistry and physic, 81th edn. CRC Press. LLC. ISBN978-0849304811 Vanysek P (2000) Electrochemical series/handbook of chemistry and physic, 81th edn. CRC Press. LLC. ISBN978-0849304811
Metadata
Title
Kinetics of mechanical activation of Al/CuO thermite
Authors
Andrey N. Streletskii
Igor’ V. Kolbanev
Galina A. Vorobieva
Alexander Yu. Dolgoborodov
Vladimir G. Kirilenko
Boris D. Yankovskii
Publication date
04-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2412-3

Other articles of this Issue 19/2018

Journal of Materials Science 19/2018 Go to the issue

Premium Partners