Auszug
***************************************************
’Calculation
on:
23.06.2015
at
09:28h’
***************************************************
’
22.6.2015:
KLEINGT.INP
f.TLORGTDP.FOR
(with
calcul.compressor
loss)’
’
1
MW
small
gas
turbine
plant
(no
changes
of
pressures:
0)
0)
’
’
2,600
kg/s
’,’=
EMPBKE
Air
mass
flow
rate
at
comb.
chamber
inlet
’
’
75000
min-1
’,’=
RN
Number
of
revolutions
’
’
15,00000
bar
’,’=
PVA
Compressor
outlet
pressure
’
’
1350,00°C
’,’=
TTBKA
Combustion
chamber
outlet
total
temperature
’
’
97,0
%
’,’=
ETAMGT
Mechanical
efficiency
of
gas
turbine
’
’
97,00
%
’,’=
ETAGGT
Generator
efficiency
of
gas
turbine
’
1
,’=
IDISS
Dissociation
parameter:
(0)
(1)
(10)
(11)
(20)
(21)’
10
,’=IWR
Special
case
distinction
parameter’
’
Air
intake’
’
1
atm
’,’=
PU
Air
pressure
’
’
15°C
’,’=
TU
Air
temperature
’
’
60
%
’,’=
FI
Relative
humidity
of
air
’
’
90
%
’,’=
ETAE
Inlet
efficiency
’
’
Compressor’
160.
,’=CVE
(m/s)
Velocity
at
compressor
inlet’
140.
,’=CVA
(m/s)
Velocity
at
compressor
outlet’
-9
,’=IZ
Number
of
compressor
stages’
’
90,000
%
’,’=
ETATV
Total
compressor
efficiency
(starting
value)’
’
u1(I)
psiSt(I)
cu3(I)
QLe
25
berechnete
Werte
fu″r
die
Verdichter
Stufen’
256.0
,
0.938495
,
10.0
,
0.
,
1
255.6
,
0.947359
,
11.0
,
0.
,
2
265.1
,
0.950684
,
12.0
,
0.
,
3
274.6
,
0.947359
,
16.0
,
0.
,
4
286.0
,
0.947359
,
30.0
,
0.
,
5
305.1
,
0.947359
,
44.0
,
0.
,
6
326.1
,
0.947359
,
56.5
,
0.
,
7
340.5
,
0.947359
,
60.0
,
0.
,
8
345.6
,
0.947359
,
60.0
,
0.
,
9
’
Combustion
chamber’
’
288,15
K
’,’=
TBE
Fuel
inlet
temperature
’
’
0,74870
’,’=
CMA
Mass
fraction
carbon
of
methane
CH4
’
’
0,25130
’,’=
HMA
Mass
fraction
hydrogen
’
’
50,056E6
’,’=
HUB
Heating
value
of
fuel
’
’
1912
J/(kgK)
’,’=
CPB
Specific
heat
capacity
of
fuel
’
’
0,83
kg/m3
’,’=
RHOB
Density
of
fuel
’
80.
,’=CBKE
(m/s)
Velocity
at
combustion
chamber
inlet’
50.
,’=CBE
(m/s)
Velocity
of
fuel
after
jet’
90.
,’=CBKA
(m/s)
Velocity
at
combustion
chamber
outlet’
’
98,90
%
’,’=
ETABKE
Flow
efficiency
at
comb.
chamber
inlet’
’
99,500
%
’,’=
ETABK
Flow
efficiency
of
combustion
chamber
’
’
99,8
%
’,’=
ETAC
Chemical
efficiency
of
combustion
chamber
’
’
99,6
%
’,’=
ETABKA
Flow
efficiency
at
comb.
chamber
outlet’
’
Turbine’
’
89,8000
%
’,’=
ETATT
Total
turbine
efficiency
(starting
value)
’
3
,’=IANZST
Number
of
stages
of
gas
turbine’
150.
,’=CTE
(m/s)
Velocity
at
turbine
inlet’
200.
,’=CM(3)
(m/s)
Velocity
CM1SG
1st
stage’
220.
,-130.
,’=CM(5),CU2(1)
(m/s)
Velocities
after
1st
stage’
195.
,’=CM(8)
(m/s)
Velocity
CM1SG
2nd
stage’
220.
,-140.
,’=CM(10),CU2(2)
(m/s)
Velocities
after
2nd
stage’
195.
,’=CM(13)
(m/s)
Velocity
CM1SG
3rd
stage’
230.
,-100.
,’=CM(15),CU2(3)
(m/s)
Velocities
after
3rd
stage’
330.000
,’=U1(1)
(m/s)
Circumferencial
velocity
rotor
inlet
1st
stage’
335.000
,’=U2(1)
(m/s)
Circumferencial
velocity
rotor
outlet
1st
sta.’
343.000
,’=U1(2)
(m/s)
Circumferencial
velocity
rotor
inlet
2nd
stage’
355.000
,’=U2(2)
(m/s)
Circumferencial
velocity
rotor
outlet
2nd
sta.’
370.000
,’=U1(3)
(m/s)
Circumferencial
velocity
rotor
inlet
3rd
stage’
385.000
,’=U2(3)
(m/s)
Circumferencial
velocity
rotor
outlet
3rd
sta.’
0.06986
,’=FACCA0(1)=EMP0L(1)/EMPBKE
C.a.f.1st
st.
(If<0:steam
cool.)’
0.06208
,’=FACCA1(1)=EMP1L(1)/EMPBKE
Cooling
air
fraction
1st
stage’
0.05202
,’=FACCA0(2)=EMP0L(2)/EMPBKE
Cooling
air
fraction
2nd
stage’
0.03230
,’=FACCA1(2)=EMP1L(2)/EMPBKE
Cooling
air
fraction
2nd
stage’
0.02060
,’=FACCA0(3)=EMP0L(3)/EMPBKE
Cooling
air
fraction
3rd
stage’
0.01662
,’=FACCA1(3)=EMP1L(3)/EMPBKE
Cooling
air
fraction
3rd
stage’
0.5
,’=RFKL(1)
EMP0F/EMP0L
Film
cooling
ratio
of
stator
1st
stage’
0.5
,’=ZETKLE(1)
Loss
coefficient
of
duct
to
stator
of
1st
stage’
0.4
,’=RFKLR(1)
EMP1F/EMP1L
Film
cooling
ratio
of
rotor
1st
stage’
1.0
,’=ZETKLA(1)
Loss
coefficient
of
duct
to
rotor
of
1st
stage’
0.4
,’=RFKL(2)
EMP0F/EMP0L
Film
cooling
ratio
of
stator
2nd
stage’
0.6
,’=ZETKLE(2)
Loss
coefficient
of
duct
to
stator
of
2nd
stage’
0.0
,’=RFKLR(2)
EMP1F/EMP1L
Film
cooling
ratio
of
rotor
2nd
stage’
1.2
,’=ZETKLA(2)
Loss
coefficient
of
duct
to
rotor
of
2nd
stage’
0.0
,’=RFKL(3)
EMP0F/EMP0L
Film
cooling
ratio
of
stator
3rd
stage’
0.7
,’=ZETKLE(3)
Loss
coefficient
of
duct
to
stator
of
3rd
stage’
0.0
,’=RFKLR(3)
EMP1F/EMP1L
Film
cooling
ratio
of
rotor
3rd
stage’
1.4
,’=ZETKLA(3)
Loss
coefficient
of
duct
to
rotor
of
3rd
stage’
0.0005
,’=SCLE(1)
(m)
Width
of
ceramic
layer
stator
1st
stage’
0.0
,’=SCLE(2)
(m)
Width
of
ceramic
layer
stator
2nd
stage’
0.0
,’=SCLE(3)
(m)
Width
of
ceramic
layer
stator
3rd
stage’
0.0005
,’=SCLA(1)
(m)
Width
of
ceramic
layer
rotor
1st
stage’
0.0
,’=SCLA(2)
(m)
Width
of
ceramic
layer
rotor
2nd
stage’
0.0
,’=SCLA(3)
(m)
Width
of
ceramic
layer
rotor
3rd
stage’
2.
,’=RLAMC
(W/(mK))
Heat
conductivity
of
ceramic
layer’
120.
,’=CKLE(1)
(m/s)
Velocity
of
cooling-gas
stator
beg.
of
chan.’
120.
,’=CKLA(1)
(m/s)
Velocity
of
cooling-gas
stator
end
of
channel’
120.
,’=CKLE(2)
(m/s)
Velocity
of
cooling-gas
stator
beg.
of
chan.’
120.
,’=CKLA(2)
(m/s)
Velocity
of
cooling-gas
stator
end
of
channel’
80.
,’=CKLE(3)
(m/s)
Velocity
of
cooling-gas
stator
beg.
of
chan.’
80.
,’=CKLA(3)
(m/s)
Velocity
of
cooling-gas
stator
end
of
chan.’
100.
,’=WKLE(1)
(m/s)
Velocity
of
cooling-gas
rotor
beg.
of
chan.’
100.
,’=WKLA(1)
(m/s)
Velocity
of
cooling-gas
rotor
end
of
channel’
100.
,’=WKLE(2)
(m/s)
Velocity
of
cooling-gas
rotor
beg.
of
chan.’
100.
,’=WKLA(2)
(m/s)
Velocity
of
cooling-gas
rotor
end
of
channel’
60.
,’=WKLE(3)
(m/s)
Velocity
of
cooling-gas
rotor
beg.
of
chan.’
60.
,’=WKLA(3)
(m/s)
Velocity
of
cooling-gas
rotor
end
of
chan.’
’
Diffusor
and
plant
outlet’
60.
,’=CDA
(m/s)
Velocity
at
diffusor
outlet’
20.
,’=CPA
(m/s)
Velocity
at
plant
outlet’
’
73,50
%
’,’=
ETADIF
Diffusor
efficiency
’
’
51,00
%
’,’=
ETAA
Plant
outlet
efficiency
’
’
Economic
data’
52.50,’=SGT
=-CGT/PET
(EURO/kW)
Spec.
cost
gas
turbine’
1680.00,’=SQPT
=-CQPT/QPT
(EURO/kW)
Spec.
cost
turbine
cooling’
73.50,’=SVERD
=CVERD/PV
(EURO/kW)
Compressor’
35.70,’=SGGT
=CGGT/PELGT
(EURO/kW)
GT
generator’
9240.00,’=SGTB
=CGTB/EMPVE
(EUROs/kg)
GT
building,
air
int.,
gas
out.’
9.00,’=SCC
=CCC/EPB
(EURO/kW)
Combustion
chamber’
126.00,’=SCTRGT=CCTRGT/PELGT
(EURO/kW)
GT
control+electric
equipm.’
=====================================================
Machzahlen
0.
=
c0
(m/s)
341.
=
a0
(m/s)
0.000
=
Ma0
160.
=
cVE
(m/s)
333.
=
aVE
(m/s)
0.480
=
MaVE
147.
=
cVA
(m/s)
507.
=
aVA
(m/s)
0.290
=
MaVA
150.
=
cTE
(m/s)
781.
=
aTE
(m/s)
0.192
=
MaTE
256.
=
cT(iSt)
708.
=
aT(iSt)
0.361
=
MaTi
261.
=
cT(iSt)
641.
=
aT(iSt)
0.407
=
MaTi
251.
=
cTA
(m/s)
573.
=
aTA
(m/s)
0.438
=
MaTA
20.
=
cPA
(m/s)
582.
=
aPA
(m/s)
0.034
=
MaPA
32.06
=
etaiGT=-PiGT/(etaC*EpB)
(%)
Innerer
Wirkungsgrad
GT
32.00
=
ETAGT=-PIGT/EPB
(%)
Gesamtwirkungsgrad
GT
14.80
=
piVAU=ptVA/pU
Druckverha″ltnis
der
Verdichtung,
bezogen
auf
PU
15.67
=
piTVAU=ptVA/pU
Totaldruckverha″ltnis
der
Verdichtung,
bezogen
auf
PU
17.64
=
piV=PVA/PVE
Druckverha″ltnis
des
Verdichters
15.95
=
piTV=PTVA/PTVE
Totaldruckverha″ltnis
des
Verdichters
366.853
=
wtV
(kJ/kg)
Spezifische
Verdichter
Arbeit
1.196
=
PV
(MW)
Verdichter
Leistung
0.625
=
FIVE=CVE/UVE
Durchfluss
Kenngro″s″e
E
0.433
=
FIVA=CVA/UVA
Durchfluss
Kenngro″s″e
A
93.22
=
etatV
(%)
Totaler
Verdichter
Wirkungsgrad
++++++++++++++++++++++++
0.97
=
pitBK=ptTE/ptVA
Totaldruckverha″ltnis
der
Brennkammer
++++++++++++++++++++++++
16.25
=
pitM1=pTE/pPA
Druckverha″ltnis
der
Turbine
14.68
=
pitTM1=ptTE/ptPA
Totaldruckverha″ltnis
der
Turbine
-695.763
=
wtT
(kJ/kg)
Spezifische
Turbinen
Arbeit
-2.313
=
PET
(MW)
Turbinen
Leistung
-93.802
=
qT
(kJ/kg)
Spezifische
Turbinen
Ku″hlung
-0.312
=
QPT
(MW)
Turbinen
Ku″hlleistung
0.9889
=
RNUTT
Totales
Turbinen
Polytropenverha″ltnis
++++++++++++++++++++++++
321.587
=
wtGT
(kJ/kg)
Spezifische
Arbeit
1.048
=
PiGT
(MW)
Innere
Leistung
5.6
=
TAUTP=TTTE/TTVE
Totales
Prozess-Temperaturverha″ltnis
++++++++++++++++++++++++
1.017
=
PelGT
(MW)
Elektrische
Leistung
der
GT
3.275
=
EPB
(MW)
Brennstoff
Energiestrom
++++++++++++++++++++++++
31.04
=
ETAGES=PEL/EPB
(%)
Gesamtwirkungsgrad
der
GT-Anlage
=====================================================
Zustandspunkte
der
offenen
Gasturbinen
Anlage
i
T(i)
tC
p(i)
h(i)
s(i)
Tt(i)
pt(i)
ht(i)
c(i)
mp(i)
v(i)
Ma(i)
(K)
(°C)
(Pa)
(J/kg)(J/kgK)
(K)
(Pa)
(J/kg)(m/s)(kg/s)(m3/kg)
U
288.1
15.0
101325
-10094
7354
288.15
101325
-10094
0
3.3
0.819
0.000
VE
275.5
2.3
85043
-22894
7359
288.15
99565
-10094
160
3.3
0.933
0.480
VE
275.5
2.3
85043
-22894
7359
288.15
99565
-10094
160
3.3
0.933
0.480
VA
652.0
378.8
1500000
365413
7417
662.06
1588134
376223
147
2.6
0.125
0.290
BKE
659.1
385.9
1560968
373023
7417
662.06
1587431
376223
80
2.6
0.122
0.157
BE
288.1
15.0
1660968
-19120
-65
288.15
1662005
-17870
50
0.1
1.205
BKA
1620.1
1346.9
1527540
1588845
8769
1623.15
1540580
1592895
90
2.7
0.312
0.115
Ku″hlluftentnahmen,
die
Zahlen
zeigen
die
Turbinenstufen
an
!
3
394.5
121.3
157350
97588
7376
347.41
180640
49805
203
0.0
0.402
3
408.8
135.6
297403
112135
7385
420.96
344645
124557
157
0.1
0.379
2
488.0
214.8
415714
193332
7395
452.46
430329
156783
211
0.1
0.249
2
544.3
271.1
733974
251733
7405
557.68
882155
265745
167
0.1
0.194
1
572.7
299.6
929984
281532
7408
539.25
771879
246506
197
0.2
0.172
1
652.0
378.8
1500000
365413
7417
662.06
1588134
376223
147
0.2
0.125
TE
1614.7
1341.5
1504479
1581645
8769
1623.15
1540486
1592895
150
2.7
0.315
0.192
2
788.5
515.4
836986
513580
7791
901.44
1404111
639405
501
0.1
0.271
0.902
3
1418.6
1145.4
836986
1319474
8755
1568.88
1308589
1515237
625
2.8
0.497
0.853
4
743.3
470.1
660576
463978
7794
755.52
702836
477370
163
0.1
0.324
0.303
5
1316.3
1043.2
660576
1184608
8715
1341.96
718311
1217257
255
3.0
0.584
0.361
7
797.1
523.9
374142
523006
8035
927.20
672599
668496
539
0.1
0.614
0.965
8
1161.7
888.6
374142
987617
8714
1311.92
630137
1176320
614
3.1
0.910
0.921
9
696.5
423.4
267663
413253
7984
726.13
313023
445336
253
0.1
0.750
0.483
10
1068.5
795.3
267663
871476
8704
1096.22
297973
905475
260
3.2
1.169
0.407
12
683.4
410.2
141615
399131
8147
819.63
282001
547956
545
0.1
1.391
1.049
13
929.8
656.7
141615
703478
8719
1086.40
269175
892728
615
3.3
1.922
1.024
14
562.2
289.0
92567
270435
8063
609.14
124110
319892
314
0.0
1.750
0.664
TA
841.4
568.2
92567
598733
8723
868.21
104966
630183
250
3.3
2.660
0.438
DA
866.7
593.5
100999
628383
8732
868.21
101718
630183
60
3.3
2.512
0.103
PA
868.0
594.9
101325
629983
8733
868.21
101404
630183
20
3.3
2.507
0.034
=====================================================
ISO-Werte
der
Turbine
ISO
1423.1
1150.0
1499562
1314696
8552
1431.91
1540486
1325946
150
3.3
0.278
79.03
=
ETTISO
(%)
Polytroper
ISO-Wirkungsgrad
1158.8
=
TTEISO
(°C)
Totale
ISO-Turbinen
Eintrittstemperatur
Vergleichswerte
fu″r
die
Brennkammer:
3.095
=
EMPAEV
(kg/s)
A″quivalenter
Verdichter
Massenstrom
-3.000
=
PDPTBK
(%)
Relativer
Totaldruckverlust
in
der
Brennkammer
15.674
=
PITVS
Totaldruckverha″ltnis
des
Verdichters
15.191
=
PITTSM1
Totaldruckverha″ltnis
der
Turbine
=====================================================
Energie
Werte
der
Turbinen
Stufen
iSt
PTSt(iSt)
wTSt(iSt)
wTEul(iSt)
Qp(iSt)
QpLe(iSt)
QpLa(iSt)
(MW)
(kJ/kg)
(kJ/kg)
(MW)
(MW)
(MW)
1
-0.688060
-228.707
-242.467
-0.174606
-0.096293
-0.078312
2
-0.788588
-244.318
-249.595
-0.100041
-0.071880
-0.028161
3
-0.836403
-251.589
-254.034
-0.037197
-0.022677
-0.014520
iSt
lambda(iSt)
beta0G(i.)
lambL1(i.)
beta1G(i.)
nSt(i.)(1/min)
1
2.291
0.025
2.451
0.024
75000
2
2.593
0.022
2.712
0.021
75000
3
2.786
0.021
2.833
0.020
75000
4
2.871
0.020
iSt
psiSt
rhohSt
etaSt
psiEul
rhohEul
EXP1G
FPIST
1
-4.08
0.340
0.759
-4.32
0.322
0.7124319
1.1057637
2
-3.88
0.371
0.803
-3.96
0.360
0.6292751
1.0227671
3
-3.39
0.384
0.849
-3.43
0.381
0.5995706
iSt
alfa0
alfa1
alfaS
beta1
beta2
betaS
1
90.0
18.6
42.8
142.7
25.3
-11.8
2
120.6
18.5
28.1
140.9
24.0
-13.4
3
122.5
18.5
27.3
137.6
25.4
-14.1
iSt
cm1
cu1
u1
wu1
cm1SL
cu1SL
cm1SG
cu1SG
1
200.000
592.896
330.000
262.896
160.343
475.333
204.566
606.432
2
195.000
582.565
343.000
239.565
171.223
511.531
197.651
590.484
3
195.000
583.503
370.000
213.503
172.924
517.444
195.366
584.599
iSt
cm2
cu2
u2
wu2
cm2SL
wu2SL
cm2SG
wu2SG
1
220.000
-129.995
335.000
-464.995
163.337
-10.232
224.608
-474.735
2
220.000
-139.992
355.000
-494.992
216.344
-131.766
220.098
-495.212
3
230.000
-99.998
385.000
-484.998
263.791
-171.254
229.555
-484.060
=====================================================
I
TWGE(I)
TWGA
TTKLA
TT1/2SG
TCGE
TCGA
(K)
(°C)
(K)
(°C)
(K)
(°C)
(K)
(°C)
(K)
(°C)
(K)
(°C)
1
1068
795
1157
884
901
628
1595
1322
1314
1041
1311
1038
1
1048
775
1105
832
809
536
1426
1153
1252
979
1237
964
2
1046
773
1156
883
927
654
1323
1050
1046
773
1156
883
2
1022
749
1052
779
826
552
1179
906
1022
749
1052
779
3
943
670
1009
736
819
546
1090
817
943
670
1009
736
3
842
569
884
611
739
466
950
677
842
569
884
611
*****************************************************
Kosten
der
Gasturbinenanlage
(mln
Euro)
(
CGT
=
0.121
Gasturbine
10.7
%
der
GTA)
(
CGT
=
0.247
Konvektionsku″hlung
21.7
%
der
GTA)
(
CGT
=
0.239
Filmku″hlung
21.0
%
der
GTA)
(
CGT
=
0.218
Beschichtung
19.1
%
der
GTA)
(
CQPT
=
0.703
Turbinenku″lung
61.9
%
der
GTA)
(
CVERD
=
0.088
Verdichter
7.7
%
der
GTA)
(
CCC
=
0.029
Brennkammer
2.6
%
der
GTA)
CCGT
=
0.942
Gasturbine
(Turb,Ku″hl.,Verd.,Verbr.)
82.9
%
der
GTA
CCTRGT
=
0.128
Regelung
und
elektrische
Ausru″stung
11.3
%
der
GTA
CGTB
=
0.030
Au″s″ere
Komponenten
der
Gasturbine
2.7
%
der
GTA
CCGT
=
1.136
Gesamte
Gasturbinen
Einheit
100.0
%
der
GTA
*****************************************************
1117.76
SCGT
=
CCGTG/PEL
(Euro/kW)
gesamtspez.
Kosten
der
GT
Anlage
****************************************************
12.0
CNA
(a)
Lebensdauer
der
Anlage
7.8=EPSI
(Ct/kWh)
Stromgestehungskosten
bei
CT=
7000.
(h/a)
****************************************************
piV
TtTE
QT/EB
etaGT
etag
ki
epsi
TtTA
TtAUS
17.6
1349
-0.10
32.1
31.0
1117.8
0.091
595
595
=====================================================
U
=
Umgebung
VE
=
Verdichter
Eintritt
VA
=
Verdichter
Austritt
BKE
=
Brennkammer
Eintritt
BE
=
Brennstoff
Eintritt
in
Brennkammer
BKA
=
Brennkammer
Austritt
1
=
Turbinen
Eintritt
(TE)
2
=
Konvektionsku″lung
Luft
Stator
Austritt
1.
Stufe
3
=
Zustand
1
1.
Stufe
4
=
Konvektionsku″lung
Luft
Rotor
Austritt
1.
Stufe
5
=
Austritt
1.
Stufe
6
=
Eintritt
2.
Stufe
7
=
Konvektionsku″lung
Luft
Stator
Austritt
2.
Stufe
8
=
Zustand
1
2.
Stufe
9
=
Konvektionsku″lung
Luft
Rotor
Austritt
2.
Stufe
10
=
Austritt
2.
Stufe
11
=
Eintritt
3.
Stufe
12
=
Konvektionsku″lung
Luft
Stator
Austritt
3.
Stufe
13
=
Zustand
1
3.
Stufe
14
=
Konvektionsku″lung
Luft
Rotor
Austritt
3.
Stufe
15
=
Turbinen
Austritt
(TA)
DA
=
Diffusor
Austritt
PA
=
Anlagen
Austritt …