Skip to main content
Top

2023 | OriginalPaper | Chapter

39. Kohlenstoff-Nanoröhrchen und Graphen

Author : Dieter Veit

Published in: Fasern

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Kohlenstoff-Nanoröhrchen (engl.: Carbon-Nanotubes bzw. CNT) sind mikroskopisch kleine röhrenförmige Gebilde aus Kohlenstoffatomen. Ihre Wände bestehen nur aus Kohlenstoff, wobei die Kohlenstoffatome eine wabenartige Struktur mit Sechsecken und jeweils drei Bindungspartnern einnehmen (vorgegeben durch die sp2-Hybridisierung). Sie ähneln daher im Aufbau Grafit und können somit als eine andere geometrische Form dieses Materials betrachtet werden. Andererseits unterscheiden sich ihre mechanischen Eigenschaften sehr von Grafit, daher werden sie oft als eigenständige Modifikation von Kohlenstoff angesehen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Boehm, H. P., Clauss, A., Fischer, G. O., & Hofmann, U. (1962). Das Adsorptionsverhalten sehr dünner Kohlenstoffolien. Zeitschrift für anorganische und allgemeine Chemie, 316(3 – 4), 119–127. Wiley-VCH, Weinheim.CrossRef Boehm, H. P., Clauss, A., Fischer, G. O., & Hofmann, U. (1962). Das Adsorptionsverhalten sehr dünner Kohlenstoffolien. Zeitschrift für anorganische und allgemeine Chemie, 316(3 – 4), 119–127. Wiley-VCH, Weinheim.CrossRef
go back to reference Dalton, A. B., Collins, S., Muňoz, E., RAzal, J. M., Ebron, V. H., Ferraris, J. P., Coleman, J. N., Kim, B. G., & Baughman, R. H. (2002). Super-tough carbon-nanotube fibres. Nature, 886, 706. Springer Nature, Berlin. Dalton, A. B., Collins, S., Muňoz, E., RAzal, J. M., Ebron, V. H., Ferraris, J. P., Coleman, J. N., Kim, B. G., & Baughman, R. H. (2002). Super-tough carbon-nanotube fibres. Nature, 886, 706. Springer Nature, Berlin.
go back to reference Ferrier, N., Kasumov, A., Deblock, R., Guéron, S., & Bouchiat, H. (2009). Superconducting properties of carbon nanotubes. Comptes Rendus Physique, 10, 252–267. Elsevier.CrossRef Ferrier, N., Kasumov, A., Deblock, R., Guéron, S., & Bouchiat, H. (2009). Superconducting properties of carbon nanotubes. Comptes Rendus Physique, 10, 252–267. Elsevier.CrossRef
go back to reference Gao, Z., Zhu, J., Rajabpour, S., Joshi, K., Kowalik, M., Croom, B., Schwab, Y., Zhang, L., Bumgardner, C., Brown, K. R., Burden, D., Klett, J. W., van Duin, A. C. T., Zhigilei, L. V., & Li, X. (2020). Graphene reinforced carbon fibers. Science Advances, 6(17). AAAS. Gao, Z., Zhu, J., Rajabpour, S., Joshi, K., Kowalik, M., Croom, B., Schwab, Y., Zhang, L., Bumgardner, C., Brown, K. R., Burden, D., Klett, J. W., van Duin, A. C. T., Zhigilei, L. V., & Li, X. (2020). Graphene reinforced carbon fibers. Science Advances, 6(17). AAAS.
go back to reference Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., & Iijima, S. (2004). Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306(5700), 1362–1364. AAAS. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., & Iijima, S. (2004). Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306(5700), 1362–1364. AAAS.
go back to reference Hiremath, N., & Bhat, G. (2017). High-performance carbon nanofibers and nanotubes. In Structure and properties of high performance fibers (S. 79–109). Elsevier.CrossRef Hiremath, N., & Bhat, G. (2017). High-performance carbon nanofibers and nanotubes. In Structure and properties of high performance fibers (S. 79–109). Elsevier.CrossRef
go back to reference Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.CrossRef Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.CrossRef
go back to reference Jensen, K., Mickelson, W., Kis, A., & Zettl, A. (2007). Buckling and kinking force measurements on individual multiwalled carbon nanotubes. Physics Review B, 76(195436). American Physical Society. Jensen, K., Mickelson, W., Kis, A., & Zettl, A. (2007). Buckling and kinking force measurements on individual multiwalled carbon nanotubes. Physics Review B, 76(195436). American Physical Society.
go back to reference Kim, S. H., Mulholland, G. W., & Zachariah, M. R. (2009). Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon, 47(5), 1297–1302. Elsevier.CrossRef Kim, S. H., Mulholland, G. W., & Zachariah, M. R. (2009). Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon, 47(5), 1297–1302. Elsevier.CrossRef
go back to reference Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388. Springer Nature.CrossRef Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388. Springer Nature.CrossRef
go back to reference Meng, Q. J., Wang, Z. M., Zhang, X. X., Wang, X. C., Bai, S. H. (2019). „Fabrication and Properties of Polyamide-6,6-functionalized Carboxylic Multi-walled Carbon Nanotube Composite Fibers“, High Performance Polymers 22 (7), Sage Publishing, Thousand Oaks. Meng, Q. J., Wang, Z. M., Zhang, X. X., Wang, X. C., Bai, S. H. (2019). „Fabrication and Properties of Polyamide-6,6-functionalized Carboxylic Multi-walled Carbon Nanotube Composite Fibers“, High Performance Polymers 22 (7), Sage Publishing, Thousand Oaks.
go back to reference Mercader, C., Denis-Lutard, V., Jestin, S., Maugey, M., Derre, A., Zakri, C., & Poulin, P. (2011). Scalable process for the spinning of PVA-carbon nanotube composite fibers. Journal of Applied Polymer Science, 125, 191–196. Wiley. Mercader, C., Denis-Lutard, V., Jestin, S., Maugey, M., Derre, A., Zakri, C., & Poulin, P. (2011). Scalable process for the spinning of PVA-carbon nanotube composite fibers. Journal of Applied Polymer Science, 125, 191–196. Wiley.
go back to reference Néri, W., Maugey, M., Miaudet, P., Derré, A., Zakri, C., & Poulin, P. (2006). Surfactant-free spinning of composite carbon nanotube fibers. Macromolecular Rapid Communications. Wiley. Néri, W., Maugey, M., Miaudet, P., Derré, A., Zakri, C., & Poulin, P. (2006). Surfactant-free spinning of composite carbon nanotube fibers. Macromolecular Rapid Communications. Wiley.
go back to reference Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. AAAS.CrossRef Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. AAAS.CrossRef
go back to reference Oberlin, A., Endo, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32(3), 335–349. Elsevier.CrossRef Oberlin, A., Endo, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32(3), 335–349. Elsevier.CrossRef
go back to reference Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10), 626–631. Springer Nature.CrossRef Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S., Schatz, G. C., & Espinosa, H. D. (2008). Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10), 626–631. Springer Nature.CrossRef
go back to reference Pop, E., Mann, D., Wang, Q., Goodson, K., & Dai, H. (2006). Thermal conductance of an individual single-wall carbon Nanotube above room temperature. Nano Letters, 6/1, 96–100. ACS Publications.CrossRef Pop, E., Mann, D., Wang, Q., Goodson, K., & Dai, H. (2006). Thermal conductance of an individual single-wall carbon Nanotube above room temperature. Nano Letters, 6/1, 96–100. ACS Publications.CrossRef
go back to reference Radushkevich, L. V., & Lukyanovich, V. M. (1952). O Strukture Ugleroda, Obrazujuŝegosja Pri Termičeskom Razloženii Okisi Ugleroda Na Železnom. Journal of Physical Chemistry, 26, 88–95. ACS Publications. Radushkevich, L. V., & Lukyanovich, V. M. (1952). O Strukture Ugleroda, Obrazujuŝegosja Pri Termičeskom Razloženii Okisi Ugleroda Na Železnom. Journal of Physical Chemistry, 26, 88–95. ACS Publications.
go back to reference Salvetat, J.-P., Bonard, J.-M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., & Zuppiroli, L. (1999). Mechanical properties of carbon nanotubes. Applied Physics A, 69, 255–260. Springer Nature.CrossRef Salvetat, J.-P., Bonard, J.-M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., & Zuppiroli, L. (1999). Mechanical properties of carbon nanotubes. Applied Physics A, 69, 255–260. Springer Nature.CrossRef
go back to reference Torres-Dias, A. C., Cerqueira, T. F. T., Cui, W., Marques, M. A. L., Bottic, S., Machona, D., Hartmann, M. A., Sun, Y., Dunstan, D. J., & San-Miguel, A. (2017). From mesoscale to nanoscale mechanics in single-wall carbon nanotubes. Carbon, 123, 145–150. Elsevier.CrossRef Torres-Dias, A. C., Cerqueira, T. F. T., Cui, W., Marques, M. A. L., Bottic, S., Machona, D., Hartmann, M. A., Sun, Y., Dunstan, D. J., & San-Miguel, A. (2017). From mesoscale to nanoscale mechanics in single-wall carbon nanotubes. Carbon, 123, 145–150. Elsevier.CrossRef
go back to reference Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Jounet, C., Bernier, P., & Poulin, P. (2000). Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 290, 1331–1334. Science Publishing Group.CrossRef Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Jounet, C., Bernier, P., & Poulin, P. (2000). Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 290, 1331–1334. Science Publishing Group.CrossRef
go back to reference Weise, B., Schneider, J., Wloka, P., & Gries, T. (2016). Graphenbasierte Faserwerkstoffe. Faserstofftabelle nach P.-A. Koch des Instituts für Textiltechnik der RWTH Aachen. Shaker. Weise, B., Schneider, J., Wloka, P., & Gries, T. (2016). Graphenbasierte Faserwerkstoffe. Faserstofftabelle nach P.-A. Koch des Instituts für Textiltechnik der RWTH Aachen. Shaker.
go back to reference Weise, B., Völkel, L., Köppe, G., Scriever, S., Mroszczok, J., Köhler, J., Scheffler, P., & Wegener, M. (2017). Melt- and wet-spinning of graphene-polymer nano-composite fibres for multifunctional textile applications. Materials Today: Proceedings, 4, 135–145, Elsevier, Amsterdam. Weise, B., Völkel, L., Köppe, G., Scriever, S., Mroszczok, J., Köhler, J., Scheffler, P., & Wegener, M. (2017). Melt- and wet-spinning of graphene-polymer nano-composite fibres for multifunctional textile applications. Materials Today: Proceedings, 4, 135–145, Elsevier, Amsterdam.
go back to reference Yu, M., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., & Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453), 637–640. Science Publishing.CrossRef Yu, M., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., & Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453), 637–640. Science Publishing.CrossRef
go back to reference Zhang, M., Atkinson, K. R., & Baughman, R. H. (2004). Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 306, 1358–1362. Science Publishing.CrossRef Zhang, M., Atkinson, K. R., & Baughman, R. H. (2004). Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 306, 1358–1362. Science Publishing.CrossRef
Metadata
Title
Kohlenstoff-Nanoröhrchen und Graphen
Author
Dieter Veit
Copyright Year
2023
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64469-0_39

Premium Partners