Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

3. Konventionelle Verfahren zur Wasserstoffherstellung

Authors : Jose Antonio Medrano, Emma Palo, Fausto Gallucci

Published in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Wasserstoff ist ein notwendiger Rohstoff in der Erzeugung von Ammoniak, für Hydrocracking sowie für die Herstellung von Methanol und Pharmazeutika und wird auch von Lebensmittel- und Metallindustrien benötigt. Nach dem Stand der Technik ist die Herstellung von Wasserstoff von der Verwendung fossiler Ausgangsstoffe und Energieträger abhängig und damit mit einer erheblichen CO2-Emission verbunden. Kapitel 3 beschreibt die derzeit eingesetzten Verfahren und benennt nachhaltigere Alternativen .

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
2.
go back to reference Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159–164 Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159–164
3.
go back to reference da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42:2018–2033 da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42:2018–2033
4.
go back to reference Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production – perspectives and uncertainties. Energy 30:2487–2504 Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production – perspectives and uncertainties. Energy 30:2487–2504
5.
go back to reference Ball M, Wietschel M (2009) The future of hydrogen – opportunities and challenges. Int J Hydrogen Energy 34:615–627 Ball M, Wietschel M (2009) The future of hydrogen – opportunities and challenges. Int J Hydrogen Energy 34:615–627
6.
go back to reference Spallina V, Pandolfo D, Battistella A, Romano MC, van Sint Annaland M, Gallucci F (2016) Techno-economic assessment of membrane assisted fluidized bed reactors for pure H 2 production with CO 2 capture. Energy Convers Manag 120:257–273 Spallina V, Pandolfo D, Battistella A, Romano MC, van Sint Annaland M, Gallucci F (2016) Techno-economic assessment of membrane assisted fluidized bed reactors for pure H 2 production with CO 2 capture. Energy Convers Manag 120:257–273
11.
go back to reference Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440 Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440
12.
go back to reference Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260 Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260
13.
go back to reference Armaroli N, Balzani V (2011) The hydrogen issue. Chemsuschem 4:21–36 Armaroli N, Balzani V (2011) The hydrogen issue. Chemsuschem 4:21–36
14.
go back to reference Angeli SD, Monteleone G, Giaconia A, Lemonidou A (2014) State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydrogen Energy 39:1979–1997 Angeli SD, Monteleone G, Giaconia A, Lemonidou A (2014) State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydrogen Energy 39:1979–1997
17.
go back to reference Basini L, Aasberg-Petersen K, Guarinoni A, Østberg M (2001) Catalytic partial oxidation of natural gas at elevated pressure and low residence time. Catal Today 64:9–20 Basini L, Aasberg-Petersen K, Guarinoni A, Østberg M (2001) Catalytic partial oxidation of natural gas at elevated pressure and low residence time. Catal Today 64:9–20
18.
go back to reference Basile F, Basini L, Amore MD, Fornasari G, Guarinoni A, Matteuzzi D, Piero GD, Trifirò F, Vaccari A (1998) Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane: residence time dependence of the reactivity features. J Catal 173:247–256 Basile F, Basini L, Amore MD, Fornasari G, Guarinoni A, Matteuzzi D, Piero GD, Trifirò F, Vaccari A (1998) Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane: residence time dependence of the reactivity features. J Catal 173:247–256
21.
go back to reference Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991 Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991
22.
go back to reference Ûarnes I (2011) Next generation coal gasification technology. CCC/187, London, UK, IEA Clean Coal Centre, 1–49 Ûarnes I (2011) Next generation coal gasification technology. CCC/187, London, UK, IEA Clean Coal Centre, 1–49
23.
go back to reference Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89:1763–1783 Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89:1763–1783
34.
go back to reference Rahimpour MR, Jafari M, Iranshahi D (2013) Progress in catalytic naphtha reforming process: a review. Appl Energy 109:79–93 Rahimpour MR, Jafari M, Iranshahi D (2013) Progress in catalytic naphtha reforming process: a review. Appl Energy 109:79–93
35.
go back to reference Fraser S (2014) Distillation in refining. In: Górak A, Schoenmakers H (Hrsg) Distillation: operation and application. Elsevier, Amsterdam, S 155–190 Fraser S (2014) Distillation in refining. In: Górak A, Schoenmakers H (Hrsg) Distillation: operation and application. Elsevier, Amsterdam, S 155–190
45.
go back to reference IEA (2007) IEA energy technology essentials – biomass for power generation and CHP. High Temp 1–4 IEA (2007) IEA energy technology essentials – biomass for power generation and CHP. High Temp 1–4
46.
go back to reference Balat H, Kirtay E (2010) Hydrogen from biomass – present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426 Balat H, Kirtay E (2010) Hydrogen from biomass – present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426
47.
go back to reference Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982 Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982
48.
go back to reference Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25:10–25 Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25:10–25
49.
go back to reference Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977 Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977
54.
go back to reference Hrbek J (2016) Status report on thermal biomass gasification in countries participating in IEA Bioenergy Task 33. Statusbericht Hrbek J (2016) Status report on thermal biomass gasification in countries participating in IEA Bioenergy Task 33. Statusbericht
55.
go back to reference Zeng K, Zhang D (2017) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326 Zeng K, Zhang D (2017) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326
56.
go back to reference Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934 Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934
64.
go back to reference IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change
65.
go back to reference IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge
66.
go back to reference IEA (2010) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, Paris IEA (2010) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, Paris
67.
go back to reference Medrano JA, Potdar I, Melendez J, Spallina V, Pacheco-Tanaka DA, van Sint Annaland M, Gallucci F (2018) The membrane-assisted chemical looping reforming concept for efficient H 2 production with inherent CO 2 capture: experimental demonstration and model validation. Appl Energy 215:75–86 Medrano JA, Potdar I, Melendez J, Spallina V, Pacheco-Tanaka DA, van Sint Annaland M, Gallucci F (2018) The membrane-assisted chemical looping reforming concept for efficient H 2 production with inherent CO 2 capture: experimental demonstration and model validation. Appl Energy 215:75–86
68.
go back to reference Medrano JA, Spallina V, van Sint Annaland M, Gallucci F (2014) Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H 2 production and CO 2 capture. Int J Hydrogen Energy 39:4725–4738 Medrano JA, Spallina V, van Sint Annaland M, Gallucci F (2014) Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H 2 production and CO 2 capture. Int J Hydrogen Energy 39:4725–4738
69.
go back to reference Rydén M, Lyngfelt A, Mattisson T (2006) Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 85:1631–1641 Rydén M, Lyngfelt A, Mattisson T (2006) Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 85:1631–1641
70.
go back to reference Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 151:143–156 Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 151:143–156
71.
go back to reference Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 38:215–282 Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 38:215–282
72.
go back to reference Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66 Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66
73.
go back to reference Gallucci F, Medrano JA, Fernandez E, Melendez J, van Sint Annaland M (2017) Advances on high temperature Pd-based membranes and membrane reactors for hydrogen purification and production. J Membr Sci Res 3:142–156 Gallucci F, Medrano JA, Fernandez E, Melendez J, van Sint Annaland M (2017) Advances on high temperature Pd-based membranes and membrane reactors for hydrogen purification and production. J Membr Sci Res 3:142–156
74.
go back to reference Fernandez E, Medrano JA, Melendez J, Parco M, van Sint Annaland M, Gallucci F, Pacheco Tanaka DA (2016) Preparation and characterization of metallic supported thin Pd-Ag membranes for high temperature hydrogen separation. Chem Eng J 305:182–190 Fernandez E, Medrano JA, Melendez J, Parco M, van Sint Annaland M, Gallucci F, Pacheco Tanaka DA (2016) Preparation and characterization of metallic supported thin Pd-Ag membranes for high temperature hydrogen separation. Chem Eng J 305:182–190
75.
go back to reference Shirasaki Y, Yasuda I (2013) Membrane reactor for hydrogen production from natural gas at the Tokyo gas company: a case study. In: Basile A (Hrsg) Handbook of membrane reactors. Woodhead Publishing, Cambridge, S 487–507 Shirasaki Y, Yasuda I (2013) Membrane reactor for hydrogen production from natural gas at the Tokyo gas company: a case study. In: Basile A (Hrsg) Handbook of membrane reactors. Woodhead Publishing, Cambridge, S 487–507
76.
go back to reference Aloisi I, Jand N, Stendardo S, Foscolo PU (2016) Hydrogen by sorption enhanced methane reforming: a grain model to study the behavior of bi-functional sorbent-catalyst particles. Chem Eng Sci 149:22–34 Aloisi I, Jand N, Stendardo S, Foscolo PU (2016) Hydrogen by sorption enhanced methane reforming: a grain model to study the behavior of bi-functional sorbent-catalyst particles. Chem Eng Sci 149:22–34
77.
go back to reference Ugarte P, Durán P, Lasobras J, Soler J, Menéndez M, Herguido J (2017) Dry reforming of biogas in fluidized bed: process intensification. Int J Hydrogen Energy 42:13589–13597 Ugarte P, Durán P, Lasobras J, Soler J, Menéndez M, Herguido J (2017) Dry reforming of biogas in fluidized bed: process intensification. Int J Hydrogen Energy 42:13589–13597
78.
go back to reference Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters – a review. Renew Sustain Energy Rev 45:710–744 Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters – a review. Renew Sustain Energy Rev 45:710–744
79.
go back to reference Abdullah B, Abd Ghani NA, Vo DVN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185 Abdullah B, Abd Ghani NA, Vo DVN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185
80.
go back to reference Upham DC, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, Metiu H, McFarland EW (2017) Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358:917–921 Upham DC, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, Metiu H, McFarland EW (2017) Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358:917–921
81.
go back to reference Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35:1160–1190 Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35:1160–1190
82.
go back to reference Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226 Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226
83.
go back to reference Christian Enger B, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27 Christian Enger B, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27
85.
go back to reference Iaquaniello G, Centi G, Salladini A, Palo E (2017) Waste as a Source of Carbon for Methanol Production. In: Basile A, Dalena F (Hrsg) Methanol, Science and Engineering. Elsevier, Amsterdam, S 95–111 Iaquaniello G, Centi G, Salladini A, Palo E (2017) Waste as a Source of Carbon for Methanol Production. In: Basile A, Dalena F (Hrsg) Methanol, Science and Engineering. Elsevier, Amsterdam, S 95–111
86.
go back to reference Kendall K (2017) Hydrogen Fuel Cells. In: Abraham MA (Hrsg) Encyclopedia of Sustainable Technology. Elsevier, Oxford, S 305–316 Kendall K (2017) Hydrogen Fuel Cells. In: Abraham MA (Hrsg) Encyclopedia of Sustainable Technology. Elsevier, Oxford, S 305–316
87.
go back to reference Eftekhari A, Fang B (2017) Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrogen Energy 42:25143–25165 Eftekhari A, Fang B (2017) Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrogen Energy 42:25143–25165
Metadata
Title
Konventionelle Verfahren zur Wasserstoffherstellung
Authors
Jose Antonio Medrano
Emma Palo
Fausto Gallucci
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_3

Premium Partner