Skip to main content
Top

2023 | OriginalPaper | Chapter

9. Koopman-Operator-Based Attitude Dynamics and Control on SO(3)

Authors : Ti Chen, Jinjun Shan, Hao Wen

Published in: Distributed Attitude Consensus of Multiple Flexible Spacecraft

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents an attitude control method based on Koopman operator theory. A set of observables is discovered to represent the nonlinear attitude dynamics on SO(3) using an infinite-dimensional linear system. With the assumption of low angular velocities, a finite-dimensional linear system is obtained by removing the high-order terms. An attitude control synthesis method is developed on the basis of the linear optimal control algorithm for the reduced linear system. The proposed controller design method is compared with some classical nonlinear optimal controllers to show its advantages. Also, the leaderless attitude synchronization problem is solved with the help of the reduced linear system and the well-studied linear multi-agent system theory. Furthermore, a possible solution to the case with a high angular velocity is provided. Simulations and experiments are conducted to verify the effectiveness of the theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khalil, H.: Nonlinear Systems. Prentice Hall, New Jersey (2002)MATH Khalil, H.: Nonlinear Systems. Prentice Hall, New Jersey (2002)MATH
2.
go back to reference Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. U.S.A. 17(5), 315 (1931)CrossRef Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. U.S.A. 17(5), 315 (1931)CrossRef
3.
go back to reference Budišić, M., Mohr, R., Mezić, I.: Applied koopmanism. Chaos Interdisc. J. Nonlinear Sci. 22(4), 047510 (2012) Budišić, M., Mohr, R., Mezić, I.: Applied koopmanism. Chaos Interdisc. J. Nonlinear Sci. 22(4), 047510 (2012)
4.
go back to reference Mauroy, A., Mezić, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61(11), 3356–3369 (2016)MathSciNetCrossRef Mauroy, A., Mezić, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61(11), 3356–3369 (2016)MathSciNetCrossRef
5.
go back to reference Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)MathSciNetCrossRef Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)MathSciNetCrossRef
6.
go back to reference Surana, A.: Koopman operator framework for time series modeling and analysis. J. Nonlinear Sci. 30(5), 1973–2006 (2020)MathSciNetCrossRef Surana, A.: Koopman operator framework for time series modeling and analysis. J. Nonlinear Sci. 30(5), 1973–2006 (2020)MathSciNetCrossRef
7.
go back to reference Cirillo, G.I., Mauroy, A., Renson, L., Kerschen, G., Sepulchre, R.: A spectral characterization of nonlinear normal modes. J. Sound Vib. 377, 284–301 (2016)CrossRef Cirillo, G.I., Mauroy, A., Renson, L., Kerschen, G., Sepulchre, R.: A spectral characterization of nonlinear normal modes. J. Sound Vib. 377, 284–301 (2016)CrossRef
8.
go back to reference Klus, S., Nüske, F., Koltai, P., Wu, H., Kevrekidis, I., Schütte, C., Noé, F.: Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28(3), 985–1010 (2018)MathSciNetCrossRef Klus, S., Nüske, F., Koltai, P., Wu, H., Kevrekidis, I., Schütte, C., Noé, F.: Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28(3), 985–1010 (2018)MathSciNetCrossRef
9.
go back to reference Huang, B., Ma, X., Vaidya, U.: Feedback stabilization using Koopman operator. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 6434–6439. IEEE (2018) Huang, B., Ma, X., Vaidya, U.: Feedback stabilization using Koopman operator. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 6434–6439. IEEE (2018)
10.
go back to reference Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PloS one 11(2), 0150171 (2016)CrossRef Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PloS one 11(2), 0150171 (2016)CrossRef
11.
go back to reference Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018)MathSciNetCrossRef Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018)MathSciNetCrossRef
12.
go back to reference Lan, Y., Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum. Physica D: Nonlinear Phenom. 242(1), 42–53 (2013)MathSciNetCrossRef Lan, Y., Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum. Physica D: Nonlinear Phenom. 242(1), 42–53 (2013)MathSciNetCrossRef
13.
go back to reference Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9(1), 4950 (2018)CrossRef Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9(1), 4950 (2018)CrossRef
14.
go back to reference Peitz, S., Klus, S.: Koopman operator-based model reduction for switched-system control of pdes. Automatica 106, 184–191 (2019)MathSciNetCrossRef Peitz, S., Klus, S.: Koopman operator-based model reduction for switched-system control of pdes. Automatica 106, 184–191 (2019)MathSciNetCrossRef
15.
go back to reference Gui, H., de Ruiter, A.H.: Robustness analysis and performance tuning for the quaternion proportional-derivative attitude controller. J. Guidance Control Dyn. 41(10), 2308–2317 (2018)CrossRef Gui, H., de Ruiter, A.H.: Robustness analysis and performance tuning for the quaternion proportional-derivative attitude controller. J. Guidance Control Dyn. 41(10), 2308–2317 (2018)CrossRef
16.
go back to reference Zheng, Z., Xu, Y., Zhang, L., Song, S.: Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology. Chin. J. Aeronaut. 29(4), 995–1006 (2016)CrossRef Zheng, Z., Xu, Y., Zhang, L., Song, S.: Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology. Chin. J. Aeronaut. 29(4), 995–1006 (2016)CrossRef
17.
go back to reference Berkane, S., Tayebi, A., et al.: Construction of synergistic potential functions on \(SO(3)\) with application to velocity-free hybrid attitude stabilization. IEEE Trans. Autom. Control 62(1), 495–501 (2017)MathSciNetCrossRef Berkane, S., Tayebi, A., et al.: Construction of synergistic potential functions on \(SO(3)\) with application to velocity-free hybrid attitude stabilization. IEEE Trans. Autom. Control 62(1), 495–501 (2017)MathSciNetCrossRef
18.
go back to reference Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans. Math. Softw. (TOMS) 37(2), 1–39 (2010) Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans. Math. Softw. (TOMS) 37(2), 1–39 (2010)
19.
go back to reference Patterson, M.A., Rao, A.V.: Gpops-ii: A matlab software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41(1), 1–37 (2014)MathSciNetCrossRef Patterson, M.A., Rao, A.V.: Gpops-ii: A matlab software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41(1), 1–37 (2014)MathSciNetCrossRef
20.
go back to reference Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)MathSciNetCrossRef Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)MathSciNetCrossRef
21.
go back to reference Lee, T.: Exponential stability of an attitude tracking control system on \(SO(3)\) for large-angle rotational maneuvers. Syst. Control Lett. 61(1), 231–237 (2012)MathSciNetCrossRef Lee, T.: Exponential stability of an attitude tracking control system on \(SO(3)\) for large-angle rotational maneuvers. Syst. Control Lett. 61(1), 231–237 (2012)MathSciNetCrossRef
22.
go back to reference Chen, T., Shan, J.: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on \(SO\)(3). Nonlinear Dyn. 95(3), 1827–1839 (2019)CrossRef Chen, T., Shan, J.: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on \(SO\)(3). Nonlinear Dyn. 95(3), 1827–1839 (2019)CrossRef
23.
go back to reference Zou, Y., Meng, Z.: Velocity-free leader-follower cooperative attitude tracking of multiple rigid bodies on \(so(3)\). IEEE Trans. Cybern. 49(12), 4078–4089 (2019)CrossRef Zou, Y., Meng, Z.: Velocity-free leader-follower cooperative attitude tracking of multiple rigid bodies on \(so(3)\). IEEE Trans. Cybern. 49(12), 4078–4089 (2019)CrossRef
24.
go back to reference Nazari, M., Butcher, E.A., Yucelen, T., Sanyal, A.K.: Decentralized consensus control of a rigid-body spacecraft formation with communication delay. J. Guidance Control Dyn. 39(4), 838–851 (2016)CrossRef Nazari, M., Butcher, E.A., Yucelen, T., Sanyal, A.K.: Decentralized consensus control of a rigid-body spacecraft formation with communication delay. J. Guidance Control Dyn. 39(4), 838–851 (2016)CrossRef
25.
go back to reference Chen, T., Shan, J.: Rotation-matrix-based attitude tracking for multiple flexible spacecraft with actuator faults. J. Guidance Control Dyn. 42(1), 181–188 (2019)CrossRef Chen, T., Shan, J.: Rotation-matrix-based attitude tracking for multiple flexible spacecraft with actuator faults. J. Guidance Control Dyn. 42(1), 181–188 (2019)CrossRef
26.
go back to reference Ghasemi, K., Ghaisari, J., Pouryayevali, M.R.: Decentralised attitude synchronisation of multiple rigid bodies on lie group \(SO(3)\). IET Control Theory Appl. 12(1), 97–109 (2018)MathSciNetCrossRef Ghasemi, K., Ghaisari, J., Pouryayevali, M.R.: Decentralised attitude synchronisation of multiple rigid bodies on lie group \(SO(3)\). IET Control Theory Appl. 12(1), 97–109 (2018)MathSciNetCrossRef
27.
go back to reference Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(1), 213–224 (2010)MathSciNetCrossRef Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(1), 213–224 (2010)MathSciNetCrossRef
28.
go back to reference Godsil, C., Royle, G.F.: Algebraic Graph Theory, vol. 207. Springer (2001) Godsil, C., Royle, G.F.: Algebraic Graph Theory, vol. 207. Springer (2001)
29.
go back to reference Ma, C.Q., Zhang, J.F.: Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Autom. Control 55(5), 1263–1268 (2010)MathSciNetCrossRef Ma, C.Q., Zhang, J.F.: Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Autom. Control 55(5), 1263–1268 (2010)MathSciNetCrossRef
30.
go back to reference Lewis, F.L., Zhang, H., Hengster-Movric, K., Das, A.: Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches. Springer (2013) Lewis, F.L., Zhang, H., Hengster-Movric, K., Das, A.: Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches. Springer (2013)
31.
go back to reference Gangapersaud, R.A., Liu, G., de Ruiter, A.H.: Detumbling a non-cooperative space target with model uncertainties using a space manipulator. J. Guidance Control Dyn. 42(4), 910–918 (2019)CrossRef Gangapersaud, R.A., Liu, G., de Ruiter, A.H.: Detumbling a non-cooperative space target with model uncertainties using a space manipulator. J. Guidance Control Dyn. 42(4), 910–918 (2019)CrossRef
Metadata
Title
Koopman-Operator-Based Attitude Dynamics and Control on SO(3)
Authors
Ti Chen
Jinjun Shan
Hao Wen
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-4258-7_9

Premium Partner