Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmentation Dataset in Gastrointestinal Endoscopy

Authors : Debesh Jha, Sharib Ali, Krister Emanuelsen, Steven A. Hicks, Vajira Thambawita, Enrique Garcia-Ceja, Michael A. Riegler, Thomas de Lange, Peter T. Schmidt, Håvard D. Johansen, Dag Johansen, Pål Halvorsen

Published in: MultiMedia Modeling

Publisher: Springer International Publishing

share
SHARE

Abstract

Gastrointestinal (GI) pathologies are periodically screened, biopsied, and resected using surgical tools. Usually, the procedures and the treated or resected areas are not specifically tracked or analysed during or after colonoscopies. Information regarding disease borders, development, amount, and size of the resected area get lost. This can lead to poor follow-up and bothersome reassessment difficulties post-treatment. To improve the current standard and also to foster more research on the topic, we have released the “Kvasir-Instrument” dataset, which consists of 590 annotated frames containing GI procedure tools such as snares, balloons, and biopsy forceps, etc. Besides the images, the dataset includes ground truth masks and bounding boxes and has been verified by two expert GI endoscopists. Additionally, we provide a baseline for the segmentation of the GI tools to promote research and algorithm development. We obtained a dice coefficient score of 0.9158 and a Jaccard index of 0.8578 using a classical U-Net architecture. A similar dice coefficient score was observed for DoubleUNet. The qualitative results showed that the model did not work for the images with specularity and the frames with multiple tools, while the best result for both methods was observed on all other types of images. Both qualitative and quantitative results show that the model performs reasonably good, but there is potential for further improvements. Benchmarking using the dataset provides an opportunity for researchers to contribute to the field of automatic endoscopic diagnostic and therapeutic tool segmentation for GI endoscopy.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of USENIX Symposium on Operating Systems Design and Implementation, pp. 265–283 (2016) Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of USENIX Symposium on Operating Systems Design and Implementation, pp. 265–283 (2016)
2.
go back to reference Ali, S., et al.: An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Sci. Rep. 10(1), 1–15 (2020) CrossRef Ali, S., et al.: An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Sci. Rep. 10(1), 1–15 (2020) CrossRef
5.
go back to reference Bernhardt, S., Nicolau, S.A., Soler, L., Doignon, C.: The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 37, 66–90 (2017) CrossRef Bernhardt, S., Nicolau, S.A., Soler, L., Doignon, C.: The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 37, 66–90 (2017) CrossRef
6.
go back to reference Bodenstedt, S., et al.: Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery. arXiv preprint arXiv:​1805.​02475 (2018) Bodenstedt, S., et al.: Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery. arXiv preprint arXiv:​1805.​02475 (2018)
7.
go back to reference Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 1–14 (2020) CrossRef Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 1–14 (2020) CrossRef
9.
go back to reference Cleary, K., Peters, T.M.: Image-guided interventions: technology review and clinical applications. Annu. Rev. Biomed. Eng. 12, 119–142 (2010) CrossRef Cleary, K., Peters, T.M.: Image-guided interventions: technology review and clinical applications. Annu. Rev. Biomed. Eng. 12, 119–142 (2010) CrossRef
10.
go back to reference Jha, D., Riegler, M., Johansen, D., Halvorsen, P., Håvard, J.: DoubleU-net: a deep convolutional neural network for medical image segmentation. In: Proceedings of 33rd International Symposium on Computer-Based Medical Systems, pp. 558–564 (2020) Jha, D., Riegler, M., Johansen, D., Halvorsen, P., Håvard, J.: DoubleU-net: a deep convolutional neural network for medical image segmentation. In: Proceedings of 33rd International Symposium on Computer-Based Medical Systems, pp. 558–564 (2020)
14.
go back to reference Shvets, A.A., Rakhlin, A., Kalinin, A.A., Iglovikov, V.I.: Automatic instrument segmentation in robot-assisted surgery using deep learning. In: Proceedings of International Conference on Machine Learning and Applications, pp. 624–628 (2018) Shvets, A.A., Rakhlin, A., Kalinin, A.A., Iglovikov, V.I.: Automatic instrument segmentation in robot-assisted surgery using deep learning. In: Proceedings of International Conference on Machine Learning and Applications, pp. 624–628 (2018)
15.
go back to reference Thambawita, V., et al.: The medico-task 2018: disease detection in the gastrointestinal tract using global features and deep learning. arXiv preprint arXiv:​1810.​13278 (2018) Thambawita, V., et al.: The medico-task 2018: disease detection in the gastrointestinal tract using global features and deep learning. arXiv preprint arXiv:​1810.​13278 (2018)
16.
go back to reference Thambawita, V., et al.: An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. arXiv preprint arXiv:​2005.​03912 (2020) Thambawita, V., et al.: An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. arXiv preprint arXiv:​2005.​03912 (2020)
Metadata
Title
Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmentation Dataset in Gastrointestinal Endoscopy
Authors
Debesh Jha
Sharib Ali
Krister Emanuelsen
Steven A. Hicks
Vajira Thambawita
Enrique Garcia-Ceja
Michael A. Riegler
Thomas de Lange
Peter T. Schmidt
Håvard D. Johansen
Dag Johansen
Pål Halvorsen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-67835-7_19

Premium Partner