Skip to main content
Top
Published in:

24-07-2018 | Methodologies and Application

Land cover change detection using focused time delay neural network

Authors: Sangram Panigrahi, Kesari Verma, Priyanka Tripathi

Published in: Soft Computing | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of improved satellite technology generates a huge amount of remote sensing data, these data play the crucial role in natural resource management. The land use and land cover (LULC) change intensely affects local environment, as well as the global environment. Therefore, the quantifiable knowledge about LULC changes occur in global scale is important to make effective planning for conservation and precise use of natural resources, that has motivated the scientists to develop the various land cover change detection techniques. In this paper, we have proposed neural network-based approach, i.e., focused time delay neural network (FTDNN)-based approach for land cover change detection, which is a time series prediction-based approach and detect the sudden change in the enhanced vegetation index (EVI) time series. The performance of the proposed method has been addressed by using quantitative and qualitative analysis techniques. For the quantitative evaluation, the proposed algorithm is applied to the standard synthetic data set, which are analogous to EVI time series data set. The performance result of the proposed method compares with the four previously existing data mining-based benchmark techniques. The analysis was shown that the FTDNN-based method significantly outperforms than other techniques. For qualitative analysis, the San Francisco Bay Area data set has been used, which comprises real EVI time series. The proposed FTDNN-based method is applied to the San Francisco Bay Area data set and observe the interesting land cover changes. These outcomes indicate the effectiveness of data mining techniques for the land cover change detection problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alcock RJ, Manolopoulos Y (1999) Time-series similarity queries employing a feature-based approach. In: 7th Hellenic conference on informatics, pp 27–29 Alcock RJ, Manolopoulos Y (1999) Time-series similarity queries employing a feature-based approach. In: 7th Hellenic conference on informatics, pp 27–29
go back to reference Amato F, Lpez A, Pea-Mndez EM, Vahara P, Hampl A, Havel J (2013) Artificial neural networks in medical diagnosis. J Appl Biomed 11:47–58CrossRef Amato F, Lpez A, Pea-Mndez EM, Vahara P, Hampl A, Havel J (2013) Artificial neural networks in medical diagnosis. J Appl Biomed 11:47–58CrossRef
go back to reference Anava O, Hazan E, Mannor S, Shamir O (2013) Online learning for time series prediction. In: Conference on learning theory, pp 172–184 Anava O, Hazan E, Mannor S, Shamir O (2013) Online learning for time series prediction. In: Conference on learning theory, pp 172–184
go back to reference Baraldi A, Parmiggiani F (1995) A neural network for unsupervised categorization of multivalued input patterns: an application to satellite image clustering. IEEE Trans Geosci Remote Sens 33(2):305–316CrossRef Baraldi A, Parmiggiani F (1995) A neural network for unsupervised categorization of multivalued input patterns: an application to satellite image clustering. IEEE Trans Geosci Remote Sens 33(2):305–316CrossRef
go back to reference Bogorny V, Shekhar S (2010) Spatial and spatio-temporal data mining. In: IEEE international conference on data mining, ICDM, p 1217 Bogorny V, Shekhar S (2010) Spatial and spatio-temporal data mining. In: IEEE international conference on data mining, ICDM, p 1217
go back to reference Boriah S (2010) Time series change detection: algorithms for land cover change. PhD thesis, Department of CSE, University of Minnesota, pp 1–160 Boriah S (2010) Time series change detection: algorithms for land cover change. PhD thesis, Department of CSE, University of Minnesota, pp 1–160
go back to reference Boriah S, Kumar V, Steinbach M, Potter C, Klooster S (2008a) Land cover change detection: a case study. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining KDD, vol 08, pp 857–865 Boriah S, Kumar V, Steinbach M, Potter C, Klooster S (2008a) Land cover change detection: a case study. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining KDD, vol 08, pp 857–865
go back to reference Boriah S, Kumar V, Steinbach M, Tan PN, Potter C, Klooster S (2008b) Detecting ecosystem disturbances and land cover change using data mining. In: Next generation of data mining. CRC Press, CH 2, pp 29–46 Boriah S, Kumar V, Steinbach M, Tan PN, Potter C, Klooster S (2008b) Detecting ecosystem disturbances and land cover change using data mining. In: Next generation of data mining. CRC Press, CH 2, pp 29–46
go back to reference Boriah S, Kumar V, Potter C, Steinbach M, Klooster S (2008c) Land cover change detection using data mining techniques. Technical report Boriah S, Kumar V, Potter C, Steinbach M, Klooster S (2008c) Land cover change detection using data mining techniques. Technical report
go back to reference Boriah S, Mithal V, Garg A, Kumar V, Steinbach M, Potter C, Klooster S (2010) A comparative study of algorithms for land cover change. In: The proceeding of the 2010 conference on intelligent data understanding, pp 175–187 Boriah S, Mithal V, Garg A, Kumar V, Steinbach M, Potter C, Klooster S (2010) A comparative study of algorithms for land cover change. In: The proceeding of the 2010 conference on intelligent data understanding, pp 175–187
go back to reference Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis, forecasting and control, 3rd edn. Prentice Hall, Englewood CliffsMATH Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis, forecasting and control, 3rd edn. Prentice Hall, Englewood CliffsMATH
go back to reference Briassoulis H (2004) Land-use, land-cover changes and global aggregate impacts. In: Land cover and land use, encyclopedia of life support systems. EOLSS-UNESCO Publ., Oxford Briassoulis H (2004) Land-use, land-cover changes and global aggregate impacts. In: Land cover and land use, encyclopedia of life support systems. EOLSS-UNESCO Publ., Oxford
go back to reference Chamber Y, Mithal V, Garg A, Brugere I, Lau M, Krishna V, Boriah S, Potter C, Klooster S (2011) A novel time series based approach to detect gradual vegitation changes in forests. In: The proceeding of the 2011 conference on intelligent data understanding, pp 248–262 Chamber Y, Mithal V, Garg A, Brugere I, Lau M, Krishna V, Boriah S, Potter C, Klooster S (2011) A novel time series based approach to detect gradual vegitation changes in forests. In: The proceeding of the 2011 conference on intelligent data understanding, pp 248–262
go back to reference Chan K, Ling S, Dillon T, Nguyen H (2011) Diagnosis of hypoglycemic episodes using a neural network based rule discovery system. Expert Syst Appl 38:9799–9808CrossRef Chan K, Ling S, Dillon T, Nguyen H (2011) Diagnosis of hypoglycemic episodes using a neural network based rule discovery system. Expert Syst Appl 38:9799–9808CrossRef
go back to reference Charaniya NA, Dudul SV (2012) Focused time delay neural network model for rainfall prediction using Indian ocean dipole index. In: Computational intelligence and communication networks, CICN, pp 851–855 Charaniya NA, Dudul SV (2012) Focused time delay neural network model for rainfall prediction using Indian ocean dipole index. In: Computational intelligence and communication networks, CICN, pp 851–855
go back to reference Chau KW, Wu CL (2010) A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J Hydroinform 12(4):458–473CrossRef Chau KW, Wu CL (2010) A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J Hydroinform 12(4):458–473CrossRef
go back to reference Chellasamy M, Chinnasamy U, Ramaswamy SK (2015) A neural-evidence pooling approach to predict urban sprawl using multi-temporal remote sensing data. Int J Geomat Geosci 5(3):459–473 Chellasamy M, Chinnasamy U, Ramaswamy SK (2015) A neural-evidence pooling approach to predict urban sprawl using multi-temporal remote sensing data. Int J Geomat Geosci 5(3):459–473
go back to reference Coppin P, Jonckherre I, Nackaerts K, Muys B (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596CrossRef Coppin P, Jonckherre I, Nackaerts K, Muys B (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596CrossRef
go back to reference De Vries B, Prncipe JC (1990) A theory for neural networks with time delays. In: NIPS, pp 162–168 De Vries B, Prncipe JC (1990) A theory for neural networks with time delays. In: NIPS, pp 162–168
go back to reference Demuth H, Beale M (1993) Neural network toolbox for use with MATLAB - User’S Guide Verion 3.0 Demuth H, Beale M (1993) Neural network toolbox for use with MATLAB - User’S Guide Verion 3.0
go back to reference Fkirin MA, Badwai SM, Mohamed SA (2009) Change detection using neural network with improvement factor in satellite images. Am J Environ Sci 5(6):706–713CrossRef Fkirin MA, Badwai SM, Mohamed SA (2009) Change detection using neural network with improvement factor in satellite images. Am J Environ Sci 5(6):706–713CrossRef
go back to reference Garg A, Manikonda L, Kumar S, Krishna V, Boriah S, Steinbach M, Toshnival D, Kumar V, Potter C, Klooster SA (2011) A model-free time series segmentation approach for land cover change detection. In: Proceedings of CIDU11, pp 144–158 Garg A, Manikonda L, Kumar S, Krishna V, Boriah S, Steinbach M, Toshnival D, Kumar V, Potter C, Klooster SA (2011) A model-free time series segmentation approach for land cover change detection. In: Proceedings of CIDU11, pp 144–158
go back to reference Gillanders SN, Coops NC, Wulder MA, Gergel SE, Nelson T (2008) Multitemporal remote sensing of landscape dynamics and pattern change: describing natural and anthropogenic trends. Prog Phys Geogr 35(5):502–528 Gillanders SN, Coops NC, Wulder MA, Gergel SE, Nelson T (2008) Multitemporal remote sensing of landscape dynamics and pattern change: describing natural and anthropogenic trends. Prog Phys Geogr 35(5):502–528
go back to reference Grekousis G, Manetos P, Yorgos NP (2013) Modeling urban evolution using neural networks, fuzzy logic and GIS: the case of the Athens metropolitan area. Cities 30:193–203CrossRef Grekousis G, Manetos P, Yorgos NP (2013) Modeling urban evolution using neural networks, fuzzy logic and GIS: the case of the Athens metropolitan area. Cities 30:193–203CrossRef
go back to reference Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, Los Altos, p 744. ISBN:0123814790 Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, Los Altos, p 744. ISBN:0123814790
go back to reference Helmy AK, El-Taweel GS (2010) Using textural and spectral characteristics. Am J Eng Appl Sci 3(4):604–610CrossRef Helmy AK, El-Taweel GS (2010) Using textural and spectral characteristics. Am J Eng Appl Sci 3(4):604–610CrossRef
go back to reference Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, LeQuere C, Ramankutty N (2012) Carbon emissions from land use and land cover change. Biogeosciences 9:5125–5142CrossRef Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, LeQuere C, Ramankutty N (2012) Carbon emissions from land use and land cover change. Biogeosciences 9:5125–5142CrossRef
go back to reference Htike KK, Khalifa OO (2010) Rainfall forecasting models using focused time-delay neural networks. In: Computer and communication engineering, ICCCE, pp 1–6 Htike KK, Khalifa OO (2010) Rainfall forecasting models using focused time-delay neural networks. In: Computer and communication engineering, ICCCE, pp 1–6
go back to reference Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106CrossRef Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106CrossRef
go back to reference Karpatne A, Jiang Z, Vatsavai RR, Shekhar S, Kumar V (2016) Monitoring land-cover changes: a machine-learning perspective. IEEE Geosci Remote Sens Mag 4(2):8–21CrossRef Karpatne A, Jiang Z, Vatsavai RR, Shekhar S, Kumar V (2016) Monitoring land-cover changes: a machine-learning perspective. IEEE Geosci Remote Sens Mag 4(2):8–21CrossRef
go back to reference Kucera J, Barbosa P, Strobl P (2007) Cumulative sum charts: a novel technique for processing daily time series of modis data for burnt area mapping in Portugal. In: International workshop on the analysis of multi-temporal remote sensing images. IEEE, pp 1–6 Kucera J, Barbosa P, Strobl P (2007) Cumulative sum charts: a novel technique for processing daily time series of modis data for burnt area mapping in Portugal. In: International workshop on the analysis of multi-temporal remote sensing images. IEEE, pp 1–6
go back to reference Kumar V, Steinbach M, Tan P-N, Klooster S, Potter C, Torregrosa A (2001) Mining scientific data: discovery of patterns in the global climate system. In: Proceedings of the joint statistical meetings (Athens, GA, Aug 5–9). American Statistical Association, Alexandria Kumar V, Steinbach M, Tan P-N, Klooster S, Potter C, Torregrosa A (2001) Mining scientific data: discovery of patterns in the global climate system. In: Proceedings of the joint statistical meetings (Athens, GA, Aug 5–9). American Statistical Association, Alexandria
go back to reference Liu HQ, Huete AR (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33(2):457–465CrossRef Liu HQ, Huete AR (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33(2):457–465CrossRef
go back to reference Lu D, Mausel P, Bronzdizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2407CrossRef Lu D, Mausel P, Bronzdizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2407CrossRef
go back to reference Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1):1–12MathSciNetCrossRef Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1):1–12MathSciNetCrossRef
go back to reference Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105(2):142–154CrossRef Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105(2):142–154CrossRef
go back to reference Mahmood R, Pielke RA, Hubbard KG, Nigoyi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltran-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953CrossRef Mahmood R, Pielke RA, Hubbard KG, Nigoyi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltran-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953CrossRef
go back to reference Mas JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20(1):139–152CrossRef Mas JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20(1):139–152CrossRef
go back to reference Meher-Homji VM (1988) Effects of forests on precipitation in India. NRTS-United Nations University (UNU), Tokyo Meher-Homji VM (1988) Effects of forests on precipitation in India. NRTS-United Nations University (UNU), Tokyo
go back to reference Mithal V, Garg A, Boriah S, Steinbach M, Kumar V, Potter C, Klooste S, Castilla-Rubio JC (2011) Monitoring global forest coverusing data mining. ACM TIST 2(4):36 Mithal V, Garg A, Boriah S, Steinbach M, Kumar V, Potter C, Klooste S, Castilla-Rubio JC (2011) Monitoring global forest coverusing data mining. ACM TIST 2(4):36
go back to reference Ngai E, Hu Y, Wong Y, Chen Y, Sun X (2011) The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis Support Syst 50(3):559–569CrossRef Ngai E, Hu Y, Wong Y, Chen Y, Sun X (2011) The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis Support Syst 50(3):559–569CrossRef
go back to reference Panigrahi S, Verma K, Tripathi P (2016a) An efficient approach to detect sudden changes in vegetation index time series for land change detection. IETE Tech Rev 33(5):539–556CrossRef Panigrahi S, Verma K, Tripathi P (2016a) An efficient approach to detect sudden changes in vegetation index time series for land change detection. IETE Tech Rev 33(5):539–556CrossRef
go back to reference Panigrahi S, Verma K, Tripathi P (2016b) Optimal threshold value determination for land change detection. IAJIT 16(2):1–10 Panigrahi S, Verma K, Tripathi P (2016b) Optimal threshold value determination for land change detection. IAJIT 16(2):1–10
go back to reference Panigrahi S, Verma K, Tripathi P (2016c) Review of MODIS EVI and NDVI data for data mining applications (communicated) Panigrahi S, Verma K, Tripathi P (2016c) Review of MODIS EVI and NDVI data for data mining applications (communicated)
go back to reference Panigrahi S, Verma K, Tripathi P (2017) Data mining algorithms for land cover change detection: a review. Sdhana J 42(12):2081–2097MathSciNetCrossRefMATH Panigrahi S, Verma K, Tripathi P (2017) Data mining algorithms for land cover change detection: a review. Sdhana J 42(12):2081–2097MathSciNetCrossRefMATH
go back to reference Pham DT, Chan AB (1998) Control chart pattern recognition using a new type of self organizing neural network. Proc Inst Mech Eng Part I J Syst Control Eng 212(2):115–127CrossRef Pham DT, Chan AB (1998) Control chart pattern recognition using a new type of self organizing neural network. Proc Inst Mech Eng Part I J Syst Control Eng 212(2):115–127CrossRef
go back to reference Qiu F, Jensen JR (2004) Opening the black box of neural networks for remote sensing image classification. Int J Remote Sens 25(9):1749–1768CrossRef Qiu F, Jensen JR (2004) Opening the black box of neural networks for remote sensing image classification. Int J Remote Sens 25(9):1749–1768CrossRef
go back to reference Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–127CrossRef Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–127CrossRef
go back to reference Salmon BP, Olivier JC, Wessels KJ, Kleynhans W, Bergh F, Steenkamp KC (2011) Unsupervised land cover change detection: meaningful sequential time series analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 4(2):327–335CrossRef Salmon BP, Olivier JC, Wessels KJ, Kleynhans W, Bergh F, Steenkamp KC (2011) Unsupervised land cover change detection: meaningful sequential time series analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 4(2):327–335CrossRef
go back to reference Shekhar S, Zhang P, Huang Y (2009) Spatial data mining. In: Data mining and knowledge discovery handbook. Springer, pp 837–854 Shekhar S, Zhang P, Huang Y (2009) Spatial data mining. In: Data mining and knowledge discovery handbook. Springer, pp 837–854
go back to reference Shumway RH, Stoffer DS (2006) Time series analysis and its applications: with R examples, 2nd edn. Springer, New YorkMATH Shumway RH, Stoffer DS (2006) Time series analysis and its applications: with R examples, 2nd edn. Springer, New YorkMATH
go back to reference Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003CrossRef Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003CrossRef
go back to reference Steinbach M, Tan PN, Kumar V, Potter C, Klooster S, Torregrosa A (2001) Clustering earth science data: goals, issues and results. In: Proceedings of the fourth KDD workshop on mining scientific datasets, pp 1–8 Steinbach M, Tan PN, Kumar V, Potter C, Klooster S, Torregrosa A (2001) Clustering earth science data: goals, issues and results. In: Proceedings of the fourth KDD workshop on mining scientific datasets, pp 1–8
go back to reference Tan P, Steinbach M, Kumar V, Potter C, Klooster S, Torregrosa A (2001) Finding spatio-temporal patterns in earth science data. In: KDD 2001 Workshop on temporal data mining, vol 19, pp 1–12 Tan P, Steinbach M, Kumar V, Potter C, Klooster S, Torregrosa A (2001) Finding spatio-temporal patterns in earth science data. In: KDD 2001 Workshop on temporal data mining, vol 19, pp 1–12
go back to reference Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley Longman Publishing, Boston, pp 1–769 Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley Longman Publishing, Boston, pp 1–769
go back to reference Taormina R, Chau KW (2015) Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J Hydrol 529(3):1617–1632CrossRef Taormina R, Chau KW (2015) Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J Hydrol 529(3):1617–1632CrossRef
go back to reference Tewkesbury AP, Comber AJ, Tate NJ, Lamb A, Fisher PF (2015) A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens Environ 160:114CrossRef Tewkesbury AP, Comber AJ, Tate NJ, Lamb A, Fisher PF (2015) A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens Environ 160:114CrossRef
go back to reference Turkson RE, Baagyere EY, Wenya GE (2016) A machine learning approach for predicting bank credit worthiness. In: Artificial intelligence and pattern recognition, AIPR, pp 1–7 Turkson RE, Baagyere EY, Wenya GE (2016) A machine learning approach for predicting bank credit worthiness. In: Artificial intelligence and pattern recognition, AIPR, pp 1–7
go back to reference Verburg PH, Crossman N, Ellis EC, Heinimann A, Hostert P, Mertz O, Nagendra H, Sikor T, Erb KH, Golubiewski N, Grau R (2015) Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12:29–41CrossRef Verburg PH, Crossman N, Ellis EC, Heinimann A, Hostert P, Mertz O, Nagendra H, Sikor T, Erb KH, Golubiewski N, Grau R (2015) Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12:29–41CrossRef
go back to reference Wang WC, Chau KW, Qiu L, Chen YB (2015) Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environ Res 139:46–54CrossRef Wang WC, Chau KW, Qiu L, Chen YB (2015) Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environ Res 139:46–54CrossRef
go back to reference Weigend AS (1994) Time series prediction: forecasting the future and understanding the past. In: Weigend AS, Gershenfeld NA (eds) Conference proceedings edition: proceedings of the NATO advanced research workshop on comparative time series analysis, held in Santa Fe, New Mexico, May 14–17 1992 Weigend AS (1994) Time series prediction: forecasting the future and understanding the past. In: Weigend AS, Gershenfeld NA (eds) Conference proceedings edition: proceedings of the NATO advanced research workshop on comparative time series analysis, held in Santa Fe, New Mexico, May 14–17 1992
go back to reference Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389(1–2):146–167CrossRef Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389(1–2):146–167CrossRef
go back to reference Zhang WJ (2007) Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks. Environ Monit Assess 130(1–3):415–422CrossRef Zhang WJ (2007) Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks. Environ Monit Assess 130(1–3):415–422CrossRef
go back to reference Zhang S, Chau KW (2009) Dimension reduction using semi-supervised locally linear embedding for plant leaf classification. Emerg Intell Comput Technol Appl 5754:948–955 Zhang S, Chau KW (2009) Dimension reduction using semi-supervised locally linear embedding for plant leaf classification. Emerg Intell Comput Technol Appl 5754:948–955
Metadata
Title
Land cover change detection using focused time delay neural network
Authors
Sangram Panigrahi
Kesari Verma
Priyanka Tripathi
Publication date
24-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 17/2019
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-018-3395-3

Other articles of this Issue 17/2019

Soft Computing 17/2019 Go to the issue

Premium Partner