Skip to main content
Top
Published in:

04-09-2021

Lane-Level Vehicle Counting Based on V2X and Centimeter-level Positioning at Urban Intersections

Authors: Jianchun Jiang, Yi Yang, Yuhuan Li, Rong Wang, Suhua Zeng

Published in: International Journal of Intelligent Transportation Systems Research | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Accurate vehicles counting for all-weather in cities are an important part of traffic management in the application of Intelligent Transportation Systems (ITS). Vehicle counting is currently collected with computer vision and sensor network methods. However, these methods require expensive hardware to achieve real-time and anti-interference capability, and do not provide lane-level vehicle information for ITS traffic management. This paper presents a lane-level vehicle counting system that is based on V2X communications and centimeter-level positioning technologies. This system can be used to traffic survey of ITS at a range of urban intersections. For realizing lane-level counting, a lane determination method is designed with on-board units (OBUs) in this paper. The lane is identified by matching the vehicle positioning information with road information from the roadside unit (RSU). The RSU collects the vehicle counting information from OBUs in different instances. The counting information includes the vehicle location data, the vehicle status data, and the vehicle number of each lane in the range of intersections. Verification and analysis were performed by a hardware-in-the-loop simulation platform. The results showed an average vehicle counting accuracy rate (99.60%). The system enabled the collection of real-time statistics with low-power consumption and low latency, providing accurate data to ITS.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Bao, X., Li, H., Xu, D., Jia, L., Ran, B., Rong, J.: Traffic vehicle counting in jam flow conditions using low-cost and energy-efficient wireless magnetic sensors. Sensors (Basel). 16(11), (2016) Bao, X., Li, H., Xu, D., Jia, L., Ran, B., Rong, J.: Traffic vehicle counting in jam flow conditions using low-cost and energy-efficient wireless magnetic sensors. Sensors (Basel). 16(11), (2016)
2.
go back to reference Zu, X., et al.: Vehicle counting and moving direction identification based on small-aperture microphone array. Sensors (Basel). 17(5), (2017) Zu, X., et al.: Vehicle counting and moving direction identification based on small-aperture microphone array. Sensors (Basel). 17(5), (2017)
3.
go back to reference Chen, Z et al.: Roadside Sensor Based Vehicle Counting Incomplex Traffic Environment. 2019 IEEE Globecom Workshops (GC Wkshps) IEEE, (2020) Chen, Z et al.: Roadside Sensor Based Vehicle Counting Incomplex Traffic Environment. 2019 IEEE Globecom Workshops (GC Wkshps) IEEE, (2020)
4.
go back to reference Park, M.-W., In Kim, J., Lee, Y.-J., Park, J., Suh, W.: Vision-based surveillance system for monitoring traffic conditions. Multimed. Tools. Appl. 76(23), 25343–25367 (2017)CrossRef Park, M.-W., In Kim, J., Lee, Y.-J., Park, J., Suh, W.: Vision-based surveillance system for monitoring traffic conditions. Multimed. Tools. Appl. 76(23), 25343–25367 (2017)CrossRef
5.
go back to reference Velazquez-Pupo, R., et al.: Vehicle detection with occlusion handling, tracking, and OC-SVM classification: a high performance vision-based system. Sensors (Basel). 18(2), (2018) Velazquez-Pupo, R., et al.: Vehicle detection with occlusion handling, tracking, and OC-SVM classification: a high performance vision-based system. Sensors (Basel). 18(2), (2018)
6.
go back to reference Barcellos, P., Bouvié, C., Escouto, F.L., Scharcanski, J.: A novel video based system for detecting and counting vehicles at user-defined virtual loops. Expert Syst. Appl. 42(4), 1845–1856 (2015)CrossRef Barcellos, P., Bouvié, C., Escouto, F.L., Scharcanski, J.: A novel video based system for detecting and counting vehicles at user-defined virtual loops. Expert Syst. Appl. 42(4), 1845–1856 (2015)CrossRef
7.
go back to reference Kuang, H., Yang, K.-F., Chen, L., Li, Y.-J., Chan, L.L.H., Yan, H.: Bayes saliency-based object proposal generator for nighttime traffic images. IEEE Trans. Intell. Transp. Syst. 19(3), 814–825 (2018)CrossRef Kuang, H., Yang, K.-F., Chen, L., Li, Y.-J., Chan, L.L.H., Yan, H.: Bayes saliency-based object proposal generator for nighttime traffic images. IEEE Trans. Intell. Transp. Syst. 19(3), 814–825 (2018)CrossRef
8.
go back to reference Guo, J.-M., Hsia, C.-H., Wong, K., Wu, J.-Y., Wu, Y.-T., Wang, N.-J.: Nighttime vehicle lamp detection and tracking with adaptive mask training. IEEE Trans. Veh. Technol. 65(6), 4023–4032 (2016)CrossRef Guo, J.-M., Hsia, C.-H., Wong, K., Wu, J.-Y., Wu, Y.-T., Wang, N.-J.: Nighttime vehicle lamp detection and tracking with adaptive mask training. IEEE Trans. Veh. Technol. 65(6), 4023–4032 (2016)CrossRef
9.
go back to reference Yang, H., Qu, S.: Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition. IET Intell. Transp. Syst. (2017) Yang, H., Qu, S.: Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition. IET Intell. Transp. Syst. (2017)
12.
go back to reference Engel, J.I., Martin, J., Barco, R.: A low-complexity vision-based system for real-time traffic monitoring. IEEE Trans. Intell. Transp. Syst. 18(5), 1279–1288 (2017)CrossRef Engel, J.I., Martin, J., Barco, R.: A low-complexity vision-based system for real-time traffic monitoring. IEEE Trans. Intell. Transp. Syst. 18(5), 1279–1288 (2017)CrossRef
13.
go back to reference Rajput, H., Som, T., Kar, S.: "An automated vehicle license plate recognition system," (in English). Comp, Article. 48(8), 56–61 (2015) Rajput, H., Som, T., Kar, S.: "An automated vehicle license plate recognition system," (in English). Comp, Article. 48(8), 56–61 (2015)
15.
go back to reference Di, B., Song, L., Li, Y., Li, G.Y.: Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems. IEEE J. Sel. Areas Commun. 35(10), 2383–2397 (2017)CrossRef Di, B., Song, L., Li, Y., Li, G.Y.: Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems. IEEE J. Sel. Areas Commun. 35(10), 2383–2397 (2017)CrossRef
16.
18.
go back to reference He, X., Zhang, X., Tang, L., Liu, W.: Instantaneous real-time kinematic decimeter-level positioning with BeiDou triple-frequency signals over medium baselines. Sensors (Basel). 16(1), (2015) He, X., Zhang, X., Tang, L., Liu, W.: Instantaneous real-time kinematic decimeter-level positioning with BeiDou triple-frequency signals over medium baselines. Sensors (Basel). 16(1), (2015)
19.
go back to reference Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., Schuh, H.: Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and BeiDou. Sci. Rep. 5, 8328 (2015)CrossRef Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., Schuh, H.: Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and BeiDou. Sci. Rep. 5, 8328 (2015)CrossRef
20.
go back to reference Chen, W., Hu, K., Li, E.: Low-cost land vehicle attitude determination using single-epoch GPS data, MEMS-based inclinometer measurements. Acta Geod. Geophys. 52(1), 111–129 (2017)CrossRef Chen, W., Hu, K., Li, E.: Low-cost land vehicle attitude determination using single-epoch GPS data, MEMS-based inclinometer measurements. Acta Geod. Geophys. 52(1), 111–129 (2017)CrossRef
21.
go back to reference Poolsin, C., Sa-Ngiam, N., Sutthisangiam, N.: Development of Centimeter Level Positioning Mobile Based Application. 2021 23rd International Conference on Advanced Communication Technology (ICACT), pp. 63-67 (2021) 10.23919/ ICACT51234.2021.9370509 Poolsin, C., Sa-Ngiam, N., Sutthisangiam, N.: Development of Centimeter Level Positioning Mobile Based Application. 2021 23rd International Conference on Advanced Communication Technology (ICACT), pp. 63-67 (2021) 10.23919/ ICACT51234.2021.9370509
22.
go back to reference Kong, H., Chen, W., Fu, S., Zheng, H., Du, L., Mao, Y.: OBU Design and Test Analysis with Centimeter-Level Positioning for LTE-V2X. 2019 5th International Conference on Transportation Information and Safety (ICTIS), pp. 383-387 (2019) 10.1109/ICTIS.2019.8883715 Kong, H., Chen, W., Fu, S., Zheng, H., Du, L., Mao, Y.: OBU Design and Test Analysis with Centimeter-Level Positioning for LTE-V2X. 2019 5th International Conference on Transportation Information and Safety (ICTIS), pp. 383-387 (2019) 10.1109/ICTIS.2019.8883715
23.
go back to reference Bila, C., Sivrikaya, F., Khan, M.A., Albayrak, S.: Vehicles of the future: a survey of research on safety issues. IEEE Trans. Intell. Transp. Syst. 18(5), 1046–1065 (2017)CrossRef Bila, C., Sivrikaya, F., Khan, M.A., Albayrak, S.: Vehicles of the future: a survey of research on safety issues. IEEE Trans. Intell. Transp. Syst. 18(5), 1046–1065 (2017)CrossRef
25.
go back to reference Gaikwad, V., Lokhande, S.: Lane departure identification for advanced driver assistance. IEEE Trans. Intell. Transp. Syst. 1–9 (2014) Gaikwad, V., Lokhande, S.: Lane departure identification for advanced driver assistance. IEEE Trans. Intell. Transp. Syst. 1–9 (2014)
26.
go back to reference Knoop, V.L., de Bakker, P.F., Tiberius, C.C.J.M., van Arem, B.: Lane determination with GPS precise point positioning. IEEE Trans. Intell. Transp. Syst. 18(9), 2503–2513 (2017)CrossRef Knoop, V.L., de Bakker, P.F., Tiberius, C.C.J.M., van Arem, B.: Lane determination with GPS precise point positioning. IEEE Trans. Intell. Transp. Syst. 18(9), 2503–2513 (2017)CrossRef
27.
go back to reference Gwon, G.-P., Hur, W.-S., Kim, S.-W., Seo, S.-W.: Generation of a precise and efficient lane-level road map for intelligent vehicle systems. IEEE Trans. Veh. Technol. 66(6), 4517–4533 (2017)CrossRef Gwon, G.-P., Hur, W.-S., Kim, S.-W., Seo, S.-W.: Generation of a precise and efficient lane-level road map for intelligent vehicle systems. IEEE Trans. Veh. Technol. 66(6), 4517–4533 (2017)CrossRef
28.
go back to reference Dashtinezhad, S., Nadeem, T., Dorohonceanu, B., Borcea, C., Kang, P., Iftode, L.: TrafficView: a driver assistant device for traffic monitoring based on car-to-car communication. In 59th IEEE Veh. Technol. Conf. (VTC), vol. 5, pp. 2946-2950 (2004) Dashtinezhad, S., Nadeem, T., Dorohonceanu, B., Borcea, C., Kang, P., Iftode, L.: TrafficView: a driver assistant device for traffic monitoring based on car-to-car communication. In 59th IEEE Veh. Technol. Conf. (VTC), vol. 5, pp. 2946-2950 (2004)
29.
go back to reference Bauza, R., Gozalvez, J.: Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle communications. J. Netw. Comput. Appl. 36(5), 1295–1307 (2013)CrossRef Bauza, R., Gozalvez, J.: Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle communications. J. Netw. Comput. Appl. 36(5), 1295–1307 (2013)CrossRef
30.
go back to reference Sanguesa, J.A., et al.: Sensing traffic density combining V2V and V2I wireless communications. Sensors (Basel). 15(12), 31794–31810 (2015)CrossRef Sanguesa, J.A., et al.: Sensing traffic density combining V2V and V2I wireless communications. Sensors (Basel). 15(12), 31794–31810 (2015)CrossRef
31.
go back to reference Cardenas-Benitez, N., Aquino-Santos, R., Magana-Espinoza, P., Aguilar-Velazco, J., Edwards-Block, A., Medina Cass, A.: Traffic congestion detection system through connected vehicles and big data. Sensors (Basel). 16(5), (2016) Cardenas-Benitez, N., Aquino-Santos, R., Magana-Espinoza, P., Aguilar-Velazco, J., Edwards-Block, A., Medina Cass, A.: Traffic congestion detection system through connected vehicles and big data. Sensors (Basel). 16(5), (2016)
32.
go back to reference Florin, R., Olariu, S.: Towards real-time density estimation using vehicle-to-vehicle communications. Transp. Res. B Methodol. 138, 435–456 (2020)CrossRef Florin, R., Olariu, S.: Towards real-time density estimation using vehicle-to-vehicle communications. Transp. Res. B Methodol. 138, 435–456 (2020)CrossRef
34.
go back to reference Chopde, N.R., Nichat, M.K.: Landmark based shortest path detection by using A* and Haversine formula. Int. J. Innov. Res. Comput. Commun. Eng. 1(2), 298–302 (2013) Chopde, N.R., Nichat, M.K.: Landmark based shortest path detection by using A* and Haversine formula. Int. J. Innov. Res. Comput. Commun. Eng. 1(2), 298–302 (2013)
35.
go back to reference Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic engineering, 4th edn. Prentice Hall (2011) Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic engineering, 4th edn. Prentice Hall (2011)
Metadata
Title
Lane-Level Vehicle Counting Based on V2X and Centimeter-level Positioning at Urban Intersections
Authors
Jianchun Jiang
Yi Yang
Yuhuan Li
Rong Wang
Suhua Zeng
Publication date
04-09-2021
Publisher
Springer US
Published in
International Journal of Intelligent Transportation Systems Research / Issue 1/2022
Print ISSN: 1348-8503
Electronic ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-021-00271-4

Premium Partners