Skip to main content
Top
Published in: Cognitive Neurodynamics 6/2022

28-02-2022 | Research Article

Large coefficient of variation of inter-spike intervals induced by noise current in the resonate-and-fire model neuron

Authors: P. R. Protachevicz, C. A. Bonin, K. C. Iarosz, I. L. Caldas, A. M. Batista

Published in: Cognitive Neurodynamics | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neuronal spike variability is a statistical property associated with the noise environment. Considering a linearised Hodgkin–Huxley model, we investigate how large spike variability can be induced in a typical stellate cell when submitted to constant and noise current amplitudes. For low noise current, we observe only periodic firing (active) or silence activities. For intermediate noise values, in addition to only active or inactive periods, we also identify a single transition from an initial spike-train (active) to silence dynamics over time, where the spike variability is low. However, for high noise current, we find intermittent active and silence periods with different values. The spike intervals during active and silent states follow the exponential distribution, which is similar to the Poisson process. For non-maximal noise current, we observe the highest values of inter-spike variability. Our results suggest sub-threshold oscillations as a possible mechanism for the appearance of high spike variability in a single neuron due to noise currents.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Balakrishnan N, Basu AP (1995) The exponential distribution: theory, methods and applications. Routledge, London Balakrishnan N, Basu AP (1995) The exponential distribution: theory, methods and applications. Routledge, London
go back to reference Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1–19PubMedCrossRef Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1–19PubMedCrossRef
go back to reference Cleanthous A, Christodoulou C (2012) Learning optimisation by high firing irregularity. Brain Res 1434:115–122PubMedCrossRef Cleanthous A, Christodoulou C (2012) Learning optimisation by high firing irregularity. Brain Res 1434:115–122PubMedCrossRef
go back to reference Ditlevsen S, Lansky P (2005) Estimation of the input parameters in the Ornstein–Uhlenbeck neuronal model. Phys Rev E 71:011907CrossRef Ditlevsen S, Lansky P (2005) Estimation of the input parameters in the Ornstein–Uhlenbeck neuronal model. Phys Rev E 71:011907CrossRef
go back to reference Engel TA, Schimansky-Geier L, Herz AVM, Schreiber S, Erchova I (2008) Subthreshold membrance-potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol 100(3):1579–1589CrossRef Engel TA, Schimansky-Geier L, Herz AVM, Schreiber S, Erchova I (2008) Subthreshold membrance-potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol 100(3):1579–1589CrossRef
go back to reference Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560(1):89–110PubMedPubMedCentralCrossRef Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560(1):89–110PubMedPubMedCentralCrossRef
go back to reference Fransén E (2005) Functional role of entorhinal cortex in working memory processing. Neural Netw 18(9):1141–1149PubMedCrossRef Fransén E (2005) Functional role of entorhinal cortex in working memory processing. Neural Netw 18(9):1141–1149PubMedCrossRef
go back to reference Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70(1):223–287CrossRef Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70(1):223–287CrossRef
go back to reference Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, CambridgeCrossRef Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, CambridgeCrossRef
go back to reference Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, CambridgeCrossRef Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, CambridgeCrossRef
go back to reference Gong Y, Hao Y, Xie Y, Ma X, Yang C (2009) Non-Gaussian noise optimized spiking activity of Hodgkin–Huxley neurons on random complex networks. Biophys Chem 144(1–2):88–93PubMedCrossRef Gong Y, Hao Y, Xie Y, Ma X, Yang C (2009) Non-Gaussian noise optimized spiking activity of Hodgkin–Huxley neurons on random complex networks. Biophys Chem 144(1–2):88–93PubMedCrossRef
go back to reference Guo D, Li C (2012) Stochastic resonance in Hodgkin–Huxley neuron induced by unreliable synaptic transmission. J Theor Biol 308:105–114PubMedCrossRef Guo D, Li C (2012) Stochastic resonance in Hodgkin–Huxley neuron induced by unreliable synaptic transmission. J Theor Biol 308:105–114PubMedCrossRef
go back to reference Hänggi P, Jung P, Zerbe C, Moss F (1993) Can colored noise improve stochastic resonance? J Stat Phys 70:25–47CrossRef Hänggi P, Jung P, Zerbe C, Moss F (1993) Can colored noise improve stochastic resonance? J Stat Phys 70:25–47CrossRef
go back to reference Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedPubMedCentralCrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedPubMedCentralCrossRef
go back to reference Kobayashi R (2009) The influence of firing mechanisms on gain modulation. J Stat Mech: Theory Exp 8:P01017 Kobayashi R (2009) The influence of firing mechanisms on gain modulation. J Stat Mech: Theory Exp 8:P01017
go back to reference Kobayashi R, Kitano K (2016) Impact of slow K\(^{+}\) currents on spike generation can be described by an adaptive threshold model. J Comput Neurosci 40:347–362PubMedPubMedCentralCrossRef Kobayashi R, Kitano K (2016) Impact of slow K\(^{+}\) currents on spike generation can be described by an adaptive threshold model. J Comput Neurosci 40:347–362PubMedPubMedCentralCrossRef
go back to reference Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9PubMedPubMedCentralCrossRef Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9PubMedPubMedCentralCrossRef
go back to reference Lánský P, Rospars JP (1995) Ornstein–Uhlenbeck model neuron revisited. Biol Cybern 72:397–406CrossRef Lánský P, Rospars JP (1995) Ornstein–Uhlenbeck model neuron revisited. Biol Cybern 72:397–406CrossRef
go back to reference Lánský P, Smith CE (1989) The effect of a random initial value in neural first-passage-time models. Math Biosci 93(2):191–215PubMedCrossRef Lánský P, Smith CE (1989) The effect of a random initial value in neural first-passage-time models. Math Biosci 93(2):191–215PubMedCrossRef
go back to reference Lengler J, Steger A (2017) Note on the coefficient of variation of neuronal spike trains. Biol Cybern 111(3–4):229–235PubMedCrossRef Lengler J, Steger A (2017) Note on the coefficient of variation of neuronal spike trains. Biol Cybern 111(3–4):229–235PubMedCrossRef
go back to reference Li M, Xie K, Kuang H, Liu J, Wang D, Fox GE, Shi Z, Chen L, Zhao F, Mao Y, Tsien JZ (2018) Neural coding of cell assemblies via spike-timing self-information. Cereb Cortex 28(7):2563–2576PubMedPubMedCentralCrossRef Li M, Xie K, Kuang H, Liu J, Wang D, Fox GE, Shi Z, Chen L, Zhao F, Mao Y, Tsien JZ (2018) Neural coding of cell assemblies via spike-timing self-information. Cereb Cortex 28(7):2563–2576PubMedPubMedCentralCrossRef
go back to reference Lu L, Jia Y, Ge M, Xu Y, Li A (2020) Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises. Nonlinear Dyn 100:877–889CrossRef Lu L, Jia Y, Ge M, Xu Y, Li A (2020) Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises. Nonlinear Dyn 100:877–889CrossRef
go back to reference Mino H, Durand DM (2008) Stochastic resonance can induce oscillation in a recurrent Hodgkin–Huxley neuron model with added Gaussian noise. In: 30th conference of proceedings in IEEE engineering medicine and biological society Mino H, Durand DM (2008) Stochastic resonance can induce oscillation in a recurrent Hodgkin–Huxley neuron model with added Gaussian noise. In: 30th conference of proceedings in IEEE engineering medicine and biological society
go back to reference Nobile AG, Ricciardi LM, Sacerdote L (1985) Exponential trends of Ornstein–Uhlenbeck first-passage-time densities. J Appl Probab 22(2):360–369CrossRef Nobile AG, Ricciardi LM, Sacerdote L (1985) Exponential trends of Ornstein–Uhlenbeck first-passage-time densities. J Appl Probab 22(2):360–369CrossRef
go back to reference Nozaki D, Mar DJ, Grigg P, Collins JJ (1999) Effects of colored noise on stochastic resonance in sensory neurons. Phys Rev Lett 82:2402CrossRef Nozaki D, Mar DJ, Grigg P, Collins JJ (1999) Effects of colored noise on stochastic resonance in sensory neurons. Phys Rev Lett 82:2402CrossRef
go back to reference Ostojic S (2014) Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat Neurosci 17(4):594–600PubMedCrossRef Ostojic S (2014) Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat Neurosci 17(4):594–600PubMedCrossRef
go back to reference Protachevicz PR, Santos MS, Seifert EG, Gabrick EC, Borges DS, Borges RR, Trobia J, Szezech JD Jr, Iarosz K, Caldas IL, Antonopoulos CG, Xu Y, Viana RL, Batista AM (2020) Noise induces continuous and noncontinuous transitions in neuronal interspike intervals range. Indian Acad Sci Conf Ser 3(12):105–109 Protachevicz PR, Santos MS, Seifert EG, Gabrick EC, Borges DS, Borges RR, Trobia J, Szezech JD Jr, Iarosz K, Caldas IL, Antonopoulos CG, Xu Y, Viana RL, Batista AM (2020) Noise induces continuous and noncontinuous transitions in neuronal interspike intervals range. Indian Acad Sci Conf Ser 3(12):105–109
go back to reference Richardson MJE, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17:923–947PubMedCrossRef Richardson MJE, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17:923–947PubMedCrossRef
go back to reference Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–3896PubMedPubMedCentralCrossRef Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–3896PubMedPubMedCentralCrossRef
go back to reference Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K-I, Komatsu H, Ogawa T, Koida K, Tanji J, Toyama K (2009) Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput Biol 5:e1000433PubMedPubMedCentralCrossRef Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K-I, Komatsu H, Ogawa T, Koida K, Tanji J, Toyama K (2009) Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput Biol 5:e1000433PubMedPubMedCentralCrossRef
go back to reference Softky WR, Kock C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13(1):334–350PubMedPubMedCentralCrossRef Softky WR, Kock C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13(1):334–350PubMedPubMedCentralCrossRef
go back to reference Svirskis G, Rinzel J (2000) Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. Biophys J 79(2):629–637PubMedPubMedCentralCrossRef Svirskis G, Rinzel J (2000) Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. Biophys J 79(2):629–637PubMedPubMedCentralCrossRef
go back to reference Umbach G, Kantak P, Jacobs J, Kahana M, Pfeiffer BE, Sperling M, Lega B (2020) Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proc Natl Acad Sci USA 117(45):28463–28474PubMedPubMedCentralCrossRef Umbach G, Kantak P, Jacobs J, Kahana M, Pfeiffer BE, Sperling M, Lega B (2020) Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proc Natl Acad Sci USA 117(45):28463–28474PubMedPubMedCentralCrossRef
go back to reference Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save E (2013) Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cereb Cortex 23(2):451–459PubMedCrossRef Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save E (2013) Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cereb Cortex 23(2):451–459PubMedCrossRef
go back to reference Vázquez-Rodríguez B, Avena-Koenigsberger A, Sporns O, Griffa A, Hagmann P, Larralde H (2017) Stochastic resonance at criticality in an network model of the human cortex. Sci Rep 7(13020):1–12 Vázquez-Rodríguez B, Avena-Koenigsberger A, Sporns O, Griffa A, Hagmann P, Larralde H (2017) Stochastic resonance at criticality in an network model of the human cortex. Sci Rep 7(13020):1–12
go back to reference Verechtchaguina T, Schimansky-Geier L, Sokolov IM (2004) Spectra and waiting-time densities in firing resonant and nonresonant neurons. Phys Rev E 70(031916):1–8 Verechtchaguina T, Schimansky-Geier L, Sokolov IM (2004) Spectra and waiting-time densities in firing resonant and nonresonant neurons. Phys Rev E 70(031916):1–8
go back to reference Verechtchaguina T, Sokolov IM, Schimansky-Geier L (2007) Interspike interval densities of resonate and fire neurons. Biosystems 89(1–3):63–68PubMedCrossRef Verechtchaguina T, Sokolov IM, Schimansky-Geier L (2007) Interspike interval densities of resonate and fire neurons. Biosystems 89(1–3):63–68PubMedCrossRef
go back to reference Wilbur WJ, Rinzel J (1983) A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions. J Theor Biol 105(2):345–368PubMedCrossRef Wilbur WJ, Rinzel J (1983) A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions. J Theor Biol 105(2):345–368PubMedCrossRef
go back to reference Yarom Y, Hounsgaard J (2011) Voltage fluctuations in neurons: signal or noise? Physiol Rev 91(3):917–929PubMedCrossRef Yarom Y, Hounsgaard J (2011) Voltage fluctuations in neurons: signal or noise? Physiol Rev 91(3):917–929PubMedCrossRef
go back to reference Zhao J, Qin Y, Yanqiu Che, Ran H, Li J (2020) Effects of network topologies on stochastic resonance in feedforward neural network. Cogn Neurodyn 14:399–409PubMedPubMedCentralCrossRef Zhao J, Qin Y, Yanqiu Che, Ran H, Li J (2020) Effects of network topologies on stochastic resonance in feedforward neural network. Cogn Neurodyn 14:399–409PubMedPubMedCentralCrossRef
Metadata
Title
Large coefficient of variation of inter-spike intervals induced by noise current in the resonate-and-fire model neuron
Authors
P. R. Protachevicz
C. A. Bonin
K. C. Iarosz
I. L. Caldas
A. M. Batista
Publication date
28-02-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 6/2022
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09789-z

Other articles of this Issue 6/2022

Cognitive Neurodynamics 6/2022 Go to the issue