Skip to main content
Top
Published in: Archive of Applied Mechanics 10/2021

28-06-2021 | Original

Large deformation analysis of two-dimensional visco-hyperelastic beams and frames

Authors: Farzam Dadgar-Rad, Nasser Firouzi

Published in: Archive of Applied Mechanics | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This contribution aims at developing a formulation for the large viscoelastic deformation of hyperelastic beams and frames under various loading and boundary conditions. To do so, the kinematics of deformation in two-dimensional space is formulated and basic kinematics and kinetic quantities are introduced. The quasi-linear viscoelasticity theory is employed to capture the time-dependent behavior of the underlying material. The corresponding time integration scheme and the consistent tangent moduli are then presented. Because of the highly nonlinear nature of governing equations at the large regime of deformations including time dependency, a nonlinear finite element formulation in the total Lagrangian framework is developed. Several numerical examples are provided to investigate the applicability of derived formulations. It is observed that the formulation can successfully capture the relaxation and creep phenomena in visco-hyperelastic beams and frames.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stokes, A.A., Shepherd, R.F., Morin, S.A., Ilievski, F., Whitesides, G.M.: A hybrid combining hard and soft robots. Soft Robot 1, 70–74 (2014)CrossRef Stokes, A.A., Shepherd, R.F., Morin, S.A., Ilievski, F., Whitesides, G.M.: A hybrid combining hard and soft robots. Soft Robot 1, 70–74 (2014)CrossRef
2.
go back to reference Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB \(4910\) polymer. Arch. Appl. Mech. 85, 523–537 (2015)CrossRef Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB \(4910\) polymer. Arch. Appl. Mech. 85, 523–537 (2015)CrossRef
3.
go back to reference Lewandowski, R., Wielentejczyk, P.: Analysis of dynamic characteristics of viscoelastic frame structures. Arch. Appl. Mech. 90, 147–171 (2020)CrossRef Lewandowski, R., Wielentejczyk, P.: Analysis of dynamic characteristics of viscoelastic frame structures. Arch. Appl. Mech. 90, 147–171 (2020)CrossRef
4.
go back to reference Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods I, derivations from the three-dimensional equations. Proc. R. Soc. Lond. A 337, 451–483 (1974)MathSciNetMATHCrossRef Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods I, derivations from the three-dimensional equations. Proc. R. Soc. Lond. A 337, 451–483 (1974)MathSciNetMATHCrossRef
5.
go back to reference Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods II, developments by direct approach. Proc. R. Soc. Lond. A 337, 485–507 (1974)MathSciNetMATHCrossRef Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods II, developments by direct approach. Proc. R. Soc. Lond. A 337, 485–507 (1974)MathSciNetMATHCrossRef
6.
go back to reference Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Math. Phys. 23, 795–804 (1972)MATH Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Math. Phys. 23, 795–804 (1972)MATH
7.
go back to reference Bathe, K.J., Ramm, E., Wilson, E.L.: Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Meth. Eng. 9, 353–386 (1975)MATHCrossRef Bathe, K.J., Ramm, E., Wilson, E.L.: Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Meth. Eng. 9, 353–386 (1975)MATHCrossRef
8.
go back to reference Noor, A.K., Peters, J.M.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. Int. J. Numer. Meth. Eng. 17, 615–631 (1981)MATHCrossRef Noor, A.K., Peters, J.M.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. Int. J. Numer. Meth. Eng. 17, 615–631 (1981)MATHCrossRef
9.
go back to reference Simo, J.C.: A finite strain beam formulation, the three-dimensional dynamic problem, part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)MATHCrossRef Simo, J.C.: A finite strain beam formulation, the three-dimensional dynamic problem, part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)MATHCrossRef
10.
go back to reference Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model, part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)MATHCrossRef Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model, part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)MATHCrossRef
12.
go back to reference Jelenić, G., Crisfield, M.A.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond. A 455, 1125–1147 (1999)MathSciNetMATHCrossRef Jelenić, G., Crisfield, M.A.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond. A 455, 1125–1147 (1999)MathSciNetMATHCrossRef
13.
go back to reference Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)MathSciNetMATHCrossRef Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)MathSciNetMATHCrossRef
14.
go back to reference Zupan, E., Saje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)MathSciNetMATHCrossRef Zupan, E., Saje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)MathSciNetMATHCrossRef
15.
go back to reference Irschik, H., Gerstmayr, J.: A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math. Comp. Model Dyn. 17, 19–29 (2011)MathSciNetMATHCrossRef Irschik, H., Gerstmayr, J.: A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math. Comp. Model Dyn. 17, 19–29 (2011)MathSciNetMATHCrossRef
16.
go back to reference Sokolov, I., Krylov, S., Harari, I.: Extension of non-linear beam models with deformable cross sections. Comput. Mech. 56, 999–1021 (2015)MathSciNetMATHCrossRef Sokolov, I., Krylov, S., Harari, I.: Extension of non-linear beam models with deformable cross sections. Comput. Mech. 56, 999–1021 (2015)MathSciNetMATHCrossRef
17.
go back to reference Ortigosa, R., Gil, A.J., Bonet, J., Hesch, C.: A computational framework for polyconvex large strain elasticity for geometrically exact beam theory. Comput. Mech. 57, 277–303 (2016)MathSciNetMATHCrossRef Ortigosa, R., Gil, A.J., Bonet, J., Hesch, C.: A computational framework for polyconvex large strain elasticity for geometrically exact beam theory. Comput. Mech. 57, 277–303 (2016)MathSciNetMATHCrossRef
18.
go back to reference Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 3241, 546–572 (2017)MathSciNetMATHCrossRef Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 3241, 546–572 (2017)MathSciNetMATHCrossRef
19.
go back to reference Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Eng. 358, 112635 (2020)MathSciNetMATHCrossRef Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Eng. 358, 112635 (2020)MathSciNetMATHCrossRef
20.
go back to reference Dadgar-Rad, F., Sahraee, S.: Large deformation analysis of fully incompressible hyperelastic curved beams. Appl. Math. Model. 93, 89–100 (2021)MathSciNetCrossRef Dadgar-Rad, F., Sahraee, S.: Large deformation analysis of fully incompressible hyperelastic curved beams. Appl. Math. Model. 93, 89–100 (2021)MathSciNetCrossRef
22.
go back to reference Katsikadelis, J.T.: Generalized fractional derivatives and their applications to mechanical systems. Arch. Appl. Mech. 85, 1307–1320 (2015)MATHCrossRef Katsikadelis, J.T.: Generalized fractional derivatives and their applications to mechanical systems. Arch. Appl. Mech. 85, 1307–1320 (2015)MATHCrossRef
23.
go back to reference Martin, O.: Nonlinear dynamic analysis of viscoelastic beams using a fractional rheological model. Appl. Math. Model. 43, 351–359 (2017)MathSciNetMATHCrossRef Martin, O.: Nonlinear dynamic analysis of viscoelastic beams using a fractional rheological model. Appl. Math. Model. 43, 351–359 (2017)MathSciNetMATHCrossRef
24.
go back to reference Pipkin, A.C., Rogers, T.G.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59–72 (1968)MATHCrossRef Pipkin, A.C., Rogers, T.G.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59–72 (1968)MATHCrossRef
25.
26.
go back to reference Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)CrossRef Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)CrossRef
27.
go back to reference Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987) MATHCrossRef Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987) MATHCrossRef
28.
go back to reference Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)CrossRef Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)CrossRef
29.
go back to reference Le Tallec, P., Rahier, Ch., Kaiss, A.: Three-dimensional incompressible viscoelasticity in large strains formulation and numerical approximation. Comput. Methods Appl. Mech. Eng. 109, 233–258 (1993)MathSciNetMATHCrossRef Le Tallec, P., Rahier, Ch., Kaiss, A.: Three-dimensional incompressible viscoelasticity in large strains formulation and numerical approximation. Comput. Methods Appl. Mech. Eng. 109, 233–258 (1993)MathSciNetMATHCrossRef
30.
go back to reference Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)MATHCrossRef Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)MATHCrossRef
31.
go back to reference Bonet, J.: Large strain viscoelastic constitutive models. Int. J. Solids Struct. 38, 2953–2968 (2001)MATHCrossRef Bonet, J.: Large strain viscoelastic constitutive models. Int. J. Solids Struct. 38, 2953–2968 (2001)MATHCrossRef
32.
go back to reference Koprowski-Theiss, N., Johlitz, M., Diebels, S.: Compressible rubber materials: experiments and simulations. Arch. Appl. Mech. 82, 1117–1132 (2012)CrossRef Koprowski-Theiss, N., Johlitz, M., Diebels, S.: Compressible rubber materials: experiments and simulations. Arch. Appl. Mech. 82, 1117–1132 (2012)CrossRef
33.
go back to reference Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)MATHCrossRef Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)MATHCrossRef
34.
go back to reference Holden, J.T.: On the finite deformation of thin viscoelastic beams. Int. J. Numer. Methods Eng. 5, 271–275 (1972)MATHCrossRef Holden, J.T.: On the finite deformation of thin viscoelastic beams. Int. J. Numer. Methods Eng. 5, 271–275 (1972)MATHCrossRef
35.
go back to reference Yang, T.Y., Lianis, G.: Large displacement analysis of viscoelastic beams and frames by the finite element method. J. Appl. Mech. 41, 635–640 (1974)CrossRef Yang, T.Y., Lianis, G.: Large displacement analysis of viscoelastic beams and frames by the finite element method. J. Appl. Mech. 41, 635–640 (1974)CrossRef
36.
go back to reference Baranenko, V.A.: Large displacements of viscoelastic beams. Int. J. Numer. Methods. Eng. 5, 271–275 (1980) Baranenko, V.A.: Large displacements of viscoelastic beams. Int. J. Numer. Methods. Eng. 5, 271–275 (1980)
37.
go back to reference Chen, T.M.: The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic timoshenko beams. Int. J. Numer. Methods. Eng. 38, 509–522 (1995)MATHCrossRef Chen, T.M.: The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic timoshenko beams. Int. J. Numer. Methods. Eng. 38, 509–522 (1995)MATHCrossRef
38.
go back to reference Lee, U., Oh, H.: Dynamics of an axially moving viscoelastic beam subject to axial tension. Int. J. Solids Struct. 42, 2381–2398 (2005)MATHCrossRef Lee, U., Oh, H.: Dynamics of an axially moving viscoelastic beam subject to axial tension. Int. J. Solids Struct. 42, 2381–2398 (2005)MATHCrossRef
39.
go back to reference Lee, K.: Large deflection of viscoelastic fiber beams. Text. Res. J. 77, 47–51 (2007)CrossRef Lee, K.: Large deflection of viscoelastic fiber beams. Text. Res. J. 77, 47–51 (2007)CrossRef
40.
go back to reference Vaz, M.A., Caire, M.: On the large deflections of linear viscoelastic beams. Int. J. Non-Linear Mech. 45, 75–81 (2010)CrossRef Vaz, M.A., Caire, M.: On the large deflections of linear viscoelastic beams. Int. J. Non-Linear Mech. 45, 75–81 (2010)CrossRef
41.
go back to reference Muliana, A.: Large deformations of nonlinear viscoelastic and multi-responsive beams. Int. J. Non-Linear Mech. 71, 152–164 (2015)CrossRef Muliana, A.: Large deformations of nonlinear viscoelastic and multi-responsive beams. Int. J. Non-Linear Mech. 71, 152–164 (2015)CrossRef
42.
go back to reference Drapaca, C., Tenti, G., Rohlf, K., Sivaloganathan, S.: A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J. Elast. 85, 65–83 (2006)MathSciNetMATHCrossRef Drapaca, C., Tenti, G., Rohlf, K., Sivaloganathan, S.: A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J. Elast. 85, 65–83 (2006)MathSciNetMATHCrossRef
43.
go back to reference Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40, 3070–3078 (2007)CrossRef Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40, 3070–3078 (2007)CrossRef
44.
go back to reference Muliana, A., Rajagopal, K.R., Wineman, A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta. Mech. 224, 2169–2183 (2013)MathSciNetMATHCrossRef Muliana, A., Rajagopal, K.R., Wineman, A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta. Mech. 224, 2169–2183 (2013)MathSciNetMATHCrossRef
45.
go back to reference Dadgar-Rad, F., Firouzi, N.: Time-dependent response of incompressible membranes based on quasi-linear viscoelasticity theory. Int. J. Appl. Mech. 13, 2150036 (2021)CrossRef Dadgar-Rad, F., Firouzi, N.: Time-dependent response of incompressible membranes based on quasi-linear viscoelasticity theory. Int. J. Appl. Mech. 13, 2150036 (2021)CrossRef
46.
go back to reference Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120, 62–70 (1998)CrossRef Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120, 62–70 (1998)CrossRef
47.
go back to reference De Pascalis, R., Abrahams, I.D., Parnell, W.J.: On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A 470, 20140058 (2014)CrossRef De Pascalis, R., Abrahams, I.D., Parnell, W.J.: On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A 470, 20140058 (2014)CrossRef
48.
go back to reference De Pascalis, R., Parnell, W.J., Abrahams, I.D., Shearer, T., Daly, D.M., Grundy, D.: The inflation of viscoelastic balloons and hollow viscera. Proc. R. Soc. A 474, 20180102 (2018)MathSciNetMATHCrossRef De Pascalis, R., Parnell, W.J., Abrahams, I.D., Shearer, T., Daly, D.M., Grundy, D.: The inflation of viscoelastic balloons and hollow viscera. Proc. R. Soc. A 474, 20180102 (2018)MathSciNetMATHCrossRef
49.
go back to reference Zhi, Y., Muliana, A., Rajagopal, K.R.: Quasi-linear viscoelastic modeling of light-activated shape memory polymers. J. Intell. Mater. Syst. Struct. 1, 1–16 (2017)MATH Zhi, Y., Muliana, A., Rajagopal, K.R.: Quasi-linear viscoelastic modeling of light-activated shape memory polymers. J. Intell. Mater. Syst. Struct. 1, 1–16 (2017)MATH
50.
go back to reference Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)MATH Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)MATH
51.
go back to reference Sansour, C.: Large strain deformations of elastic shells, constitutive modelling and finite element analysis. Comput. Methods Appl. Mech. Eng. 161, 1–18 (1998)MathSciNetMATHCrossRef Sansour, C.: Large strain deformations of elastic shells, constitutive modelling and finite element analysis. Comput. Methods Appl. Mech. Eng. 161, 1–18 (1998)MathSciNetMATHCrossRef
52.
go back to reference Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite deformation shell theory, an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24, 435–447 (2000)MATHCrossRef Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite deformation shell theory, an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24, 435–447 (2000)MATHCrossRef
53.
go back to reference Dadgar-Rad, F.: A two dimensional electro-beam model for large deformation analysis of dielectric polymer actuators. Int. J. Solids Struct. 165, 104–114 (2019)CrossRef Dadgar-Rad, F.: A two dimensional electro-beam model for large deformation analysis of dielectric polymer actuators. Int. J. Solids Struct. 165, 104–114 (2019)CrossRef
54.
go back to reference Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, New York (2000)MATH Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, New York (2000)MATH
55.
go back to reference Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three Dimensional Elasticity. Elsevier, Amsterdam (1988)MATH Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three Dimensional Elasticity. Elsevier, Amsterdam (1988)MATH
56.
go back to reference Simo, J.C., Hughes, T.: Computational Inelasticity. Springer, New York (1998)MATH Simo, J.C., Hughes, T.: Computational Inelasticity. Springer, New York (1998)MATH
57.
go back to reference Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures. Volume 1, Essentials, vol. 1. Wiley, Chichester (1991)MATH Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures. Volume 1, Essentials, vol. 1. Wiley, Chichester (1991)MATH
58.
go back to reference Warriner, W.C.: Designing with Delrin. Mech. Eng. 81, 60–64 (1959) Warriner, W.C.: Designing with Delrin. Mech. Eng. 81, 60–64 (1959)
59.
go back to reference Williams, F.W.: An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections. Q. J. Mech. Appl. Maths. 17, 451–469 (1964)MATHCrossRef Williams, F.W.: An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections. Q. J. Mech. Appl. Maths. 17, 451–469 (1964)MATHCrossRef
60.
go back to reference Wood, R.D., Zienkiewicz, O.C.: Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. Comput. Struct. 7, 725–735 (1977)MathSciNetMATHCrossRef Wood, R.D., Zienkiewicz, O.C.: Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. Comput. Struct. 7, 725–735 (1977)MathSciNetMATHCrossRef
61.
go back to reference Jetteur, P.H., Cescotto, S., de Goyet, V.D., Frey, F.: Improved nonlinear finite elements for oriented bodies using an extension of Marguerre’s theory. Comput. Struct. 17, 129–137 (1983)MATHCrossRef Jetteur, P.H., Cescotto, S., de Goyet, V.D., Frey, F.: Improved nonlinear finite elements for oriented bodies using an extension of Marguerre’s theory. Comput. Struct. 17, 129–137 (1983)MATHCrossRef
62.
go back to reference Akoussah, E., Beaulieu, D., Dhatt, G.: Curved beam element via penalty/mixed formulation for nonlinear in-plane analysis. Commun. Appl. Numer. Methods. 2, 617–623 (1986)MATHCrossRef Akoussah, E., Beaulieu, D., Dhatt, G.: Curved beam element via penalty/mixed formulation for nonlinear in-plane analysis. Commun. Appl. Numer. Methods. 2, 617–623 (1986)MATHCrossRef
63.
go back to reference Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)CrossRef Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)CrossRef
Metadata
Title
Large deformation analysis of two-dimensional visco-hyperelastic beams and frames
Authors
Farzam Dadgar-Rad
Nasser Firouzi
Publication date
28-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 10/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02008-x

Other articles of this Issue 10/2021

Archive of Applied Mechanics 10/2021 Go to the issue

Premium Partners