Skip to main content
Top
Published in: Queueing Systems 4/2013

01-04-2013

Large deviations for the empirical mean of an \(M/M/1\) queue

Authors: Jose Blanchet, Peter Glynn, Sean Meyn

Published in: Queueing Systems | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \((Q(k):k\ge 0)\) be an \(M/M/1\) queue with traffic intensity \(\rho \in (0,1).\) Consider the quantity
$$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$
for any \(p>0.\) The ergodic theorem yields that \(S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]\), where \(Q(\infty )\) is geometrically distributed with mean \(\rho /(1-\rho ).\) It is known that one can explicitly characterize \(I(\varepsilon )>0\) such that
$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$
In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving
$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$
where \(C(p)>0\) is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arendarczyk, A., Dȩbicki, K., Mandjes, M.: On the tail asymptotics of the area swept under the Brownian storage graph. Math. Oper. Res. (accepted) Arendarczyk, A., Dȩbicki, K., Mandjes, M.: On the tail asymptotics of the area swept under the Brownian storage graph. Math. Oper. Res. (accepted)
2.
go back to reference Asmussen, S.: Applied Probability and Queues. Springer, New York (2003) Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)
4.
go back to reference Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition. Sib. Math. J. 41, 811–848 (2000)CrossRef Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition. Sib. Math. J. 41, 811–848 (2000)CrossRef
5.
go back to reference Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)CrossRef Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)CrossRef
6.
go back to reference Denisov, D., Dieker, A., Shneer, V.: Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36, 1946–1991 (2008)CrossRef Denisov, D., Dieker, A., Shneer, V.: Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36, 1946–1991 (2008)CrossRef
7.
go back to reference Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. II. Commun. Pure Appl. Math. 28, 1–47 (1975); ibid. 28, 279–301 (1975) Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. II. Commun. Pure Appl. Math. 28, 1–47 (1975); ibid. 28, 279–301 (1975)
8.
go back to reference Duffy, K.R., Meyn, S.P.: Most likely paths to error when estimating the mean of a reflected random walk. Perform. Eval. 67(12), 1290–1303 (2010)CrossRef Duffy, K.R., Meyn, S.P.: Most likely paths to error when estimating the mean of a reflected random walk. Perform. Eval. 67(12), 1290–1303 (2010)CrossRef
9.
go back to reference Embrechts, P., Klppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997)CrossRef Embrechts, P., Klppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997)CrossRef
10.
go back to reference Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, Series in Comprehensive Studies in Mathematics. Springer, New York (1984) Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, Series in Comprehensive Studies in Mathematics. Springer, New York (1984)
11.
go back to reference Kontoyiannis, I., Meyn, S.P.: Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13, 304–362 (2003)CrossRef Kontoyiannis, I., Meyn, S.P.: Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13, 304–362 (2003)CrossRef
12.
go back to reference Meyn, S.P.: Large deviation asymptotics and control variates for simulating large functions. Ann. Appl. Probab. 16(1), 310–339 (2006)CrossRef Meyn, S.P.: Large deviation asymptotics and control variates for simulating large functions. Ann. Appl. Probab. 16(1), 310–339 (2006)CrossRef
13.
go back to reference Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, Cambridge (2007)CrossRef Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, Cambridge (2007)CrossRef
14.
go back to reference Miller, H.: A convexity property in the theory of random variables defined on a finite Markov chain. Ann. Math. Stat. 32, 1260–1270 (1961) Miller, H.: A convexity property in the theory of random variables defined on a finite Markov chain. Ann. Math. Stat. 32, 1260–1270 (1961)
15.
go back to reference Ney, P., Nummelin, E.: Markov additive processes. II. Large deviations. Ann. Probab. 15(2), 593–609 (1987)CrossRef Ney, P., Nummelin, E.: Markov additive processes. II. Large deviations. Ann. Probab. 15(2), 593–609 (1987)CrossRef
16.
go back to reference Rozovskii, L.V.: Probabilities of large deviations of sums of independent random variables. Theory Probab. Appl. 34, 625–644 (1990)CrossRef Rozovskii, L.V.: Probabilities of large deviations of sums of independent random variables. Theory Probab. Appl. 34, 625–644 (1990)CrossRef
Metadata
Title
Large deviations for the empirical mean of an queue
Authors
Jose Blanchet
Peter Glynn
Sean Meyn
Publication date
01-04-2013
Publisher
Springer US
Published in
Queueing Systems / Issue 4/2013
Print ISSN: 0257-0130
Electronic ISSN: 1572-9443
DOI
https://doi.org/10.1007/s11134-013-9349-7

Other articles of this Issue 4/2013

Queueing Systems 4/2013 Go to the issue

Premium Partner