Skip to main content
Top

2018 | OriginalPaper | Chapter

Large Eddy Simulation-Based Lattice Boltzmann Method with Different Collision Models

Authors : Mohamed Hamdi, Souheil Elalimi, Sassi Ben Nasrallah

Published in: Exergy for A Better Environment and Improved Sustainability 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is of interest to discuss the analogies between ELB and LBM with turbulence models. This paper addresses the issue of incorporation of the subgrid turbulence model in the lattice Boltzmann equation (LBE). A lattice Boltzmann solver is implemented using various techniques, and the performance will be discussed. The numerical validity of the codes is tested against known fluid flow solutions, and a visual representation of the fluid flow is created. The simulations include lattice Boltzmann method with subgrid model and single-relaxation-time (SRT), multiple-relaxation-time (MRT), and entropic collision models (ELBM). We explore the behavior and accuracy of the proposed models on lid-driven square cavity at Reynolds number up to 10.000. Our results clearly show that the LES-MRT model remains the most effective in terms of accuracy and stability. Also our results highlight the subgrid features of the ELBE.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ansumali, S., Karlin, I.: Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E. 66(2), 026311 (2002)MathSciNetCrossRef Ansumali, S., Karlin, I.: Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E. 66(2), 026311 (2002)MathSciNetCrossRef
go back to reference Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)CrossRef Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003)CrossRef
go back to reference Arcidiacono, S., Karlin, I.V., Mantzaras, J., Frouzakis, C.E.: Lattice Boltzmann model for the simulation of multicomponent mixtures. Phys. Rev. E. 76, 046703 (2007)CrossRef Arcidiacono, S., Karlin, I.V., Mantzaras, J., Frouzakis, C.E.: Lattice Boltzmann model for the simulation of multicomponent mixtures. Phys. Rev. E. 76, 046703 (2007)CrossRef
go back to reference Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511 (1954)CrossRef Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511 (1954)CrossRef
go back to reference Chen, S.: A large-eddy-based lattice Boltzmann model for turbulent flow simulation. Appl. Math. Comput. 215(2), 591–598 (2009) Chen, S.: A large-eddy-based lattice Boltzmann model for turbulent flow simulation. Appl. Math. Comput. 215(2), 591–598 (2009)
go back to reference Chikatamarla, S.S., Ansumali, S., Karlin, I.V.: Grad’s approximation for missing data in lattice Boltzmann simulations. Europhys. Lett. 74(2), 215–221 (2006)MathSciNetCrossRef Chikatamarla, S.S., Ansumali, S., Karlin, I.V.: Grad’s approximation for missing data in lattice Boltzmann simulations. Europhys. Lett. 74(2), 215–221 (2006)MathSciNetCrossRef
go back to reference D’Humieres, D., Irina, G., Manfred, K., Pierre, L., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. Series A-Math. Phys. Eng. Sci. 360(1792), 437–451 (2002)MathSciNetCrossRef D’Humieres, D., Irina, G., Manfred, K., Pierre, L., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. Series A-Math. Phys. Eng. Sci. 360(1792), 437–451 (2002)MathSciNetCrossRef
go back to reference Deng, L., Zhang, Y., Wen, Y., Zhou, H.: A fractional-step thermal lattice Boltzmann model for high Peclet number flow. Comput. Math. Appl. 70(5), 1152–1161 (2015) Deng, L., Zhang, Y., Wen, Y., Zhou, H.: A fractional-step thermal lattice Boltzmann model for high Peclet number flow. Comput. Math. Appl. 70(5), 1152–1161 (2015)
go back to reference Ding, Y., Kawahara, M.: Linear stability of incompressible fluid flow in a cavity using finite element method. Int. J. Numer. Methods Fluids. 27, 139–157 (1998)MathSciNetCrossRef Ding, Y., Kawahara, M.: Linear stability of incompressible fluid flow in a cavity using finite element method. Int. J. Numer. Methods Fluids. 27, 139–157 (1998)MathSciNetCrossRef
go back to reference Dong, Y.-H., Sagaut, P., Marie, S.: Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method. Phys. Fluids. 20, 035104 (2008)CrossRef Dong, Y.-H., Sagaut, P., Marie, S.: Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method. Phys. Fluids. 20, 035104 (2008)CrossRef
go back to reference Dubois, F., Lallemand, P., Tekitek, M.: On a superconvergent lattice Boltzmann boundary scheme. Comput. Math. Appl. 59(7), 2141–2149 (2010)MathSciNetCrossRef Dubois, F., Lallemand, P., Tekitek, M.: On a superconvergent lattice Boltzmann boundary scheme. Comput. Math. Appl. 59(7), 2141–2149 (2010)MathSciNetCrossRef
go back to reference Eggels, J.G.M.: Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow. 17(3), 307–323 (1996)CrossRef Eggels, J.G.M.: Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow. 17(3), 307–323 (1996)CrossRef
go back to reference Erturk, E., Corke, T.C., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids. 48, 747–774 (2005)CrossRef Erturk, E., Corke, T.C., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids. 48, 747–774 (2005)CrossRef
go back to reference Ghia, U., Ghia, K.N., Shin, C.T.: High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRef Ghia, U., Ghia, K.N., Shin, C.T.: High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRef
go back to reference Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171–1195 (2005)CrossRef Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171–1195 (2005)CrossRef
go back to reference Ginzburg, I., Alder, P.M.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II. 4, 191–214 (1994) Ginzburg, I., Alder, P.M.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II. 4, 191–214 (1994)
go back to reference Ginzburg, I., d’Humières, D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E. 68, 066614 (2002)MathSciNetCrossRef Ginzburg, I., d’Humières, D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E. 68, 066614 (2002)MathSciNetCrossRef
go back to reference Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3(2), 427–478 (2008)MathSciNet Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3(2), 427–478 (2008)MathSciNet
go back to reference Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)MathSciNetCrossRef Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)MathSciNetCrossRef
go back to reference He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E. 56, 6811 (1997)CrossRef He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E. 56, 6811 (1997)CrossRef
go back to reference Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice Boltzmann Subgrid model for high Reynolds number flows. Fields Inst. Comm. 6, 151–166 (1996)MathSciNetMATH Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice Boltzmann Subgrid model for high Reynolds number flows. Fields Inst. Comm. 6, 151–166 (1996)MathSciNetMATH
go back to reference Karlin, I.V., Succi, S., Chikatamarla, S.S.: Comment on “Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations”. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 068701 (2011a)CrossRef Karlin, I.V., Succi, S., Chikatamarla, S.S.: Comment on “Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations”. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 068701 (2011a)CrossRef
go back to reference Karlin, I., Asinari, P., Succi, S.: Matrix lattice Boltzmann reloaded. Phil. Trans. R. Soc. A. 369, 2202–2210 (2011b)MathSciNetCrossRef Karlin, I., Asinari, P., Succi, S.: Matrix lattice Boltzmann reloaded. Phil. Trans. R. Soc. A. 369, 2202–2210 (2011b)MathSciNetCrossRef
go back to reference Keating, B., Vahala, G.: Entropic lattice Boltzmann representations required to recover Navier-Stokes flows. Phys. Rev. E. 75, 036712 (2007)MathSciNetCrossRef Keating, B., Vahala, G.: Entropic lattice Boltzmann representations required to recover Navier-Stokes flows. Phys. Rev. E. 75, 036712 (2007)MathSciNetCrossRef
go back to reference Krafczyk, M., Tölke, J., Luo, L.S.: Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B. 17, 33–39 (2003)CrossRef Krafczyk, M., Tölke, J., Luo, L.S.: Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B. 17, 33–39 (2003)CrossRef
go back to reference Lachowicz, M.: Links between microscopic and macroscopic descriptions. Multiscale Prob. Life Sci., Lecture Notes in Mathematics. 1940, 201–267 (2008) Lachowicz, M.: Links between microscopic and macroscopic descriptions. Multiscale Prob. Life Sci., Lecture Notes in Mathematics. 1940, 201–267 (2008)
go back to reference Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E. 61, 6546 (2000)MathSciNetCrossRef Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E. 61, 6546 (2000)MathSciNetCrossRef
go back to reference Lu, Z., Liao, Y., Qian, D., McLaughlin, J.B., Derksen, J.J., Kontomaris, K.: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a Nonuniform grid. J. Comput. Phys. 181, 675–704 (2002)CrossRef Lu, Z., Liao, Y., Qian, D., McLaughlin, J.B., Derksen, J.J., Kontomaris, K.: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a Nonuniform grid. J. Comput. Phys. 181, 675–704 (2002)CrossRef
go back to reference Luo, L.S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E. 83(056710), 1–24 (2011) Luo, L.S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E. 83(056710), 1–24 (2011)
go back to reference Malaspinas, O., Deville, M., Chopard, B.: Towards a physical interpretation of the entropic lattice Boltzmann method. Phys. Rev. E. 78, 066705 (2008) Malaspinas, O., Deville, M., Chopard, B.: Towards a physical interpretation of the entropic lattice Boltzmann method. Phys. Rev. E. 78, 066705 (2008)
go back to reference Malaspinas, O., Sagaut, P.: Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Phys. Fluids. 23, 105103 (2011)CrossRef Malaspinas, O., Sagaut, P.: Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Phys. Fluids. 23, 105103 (2011)CrossRef
go back to reference Mohamad, A.A.: Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer. Sure Print, Calgary (2007) Mohamad, A.A.: Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer. Sure Print, Calgary (2007)
go back to reference Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Ann. Rev. 16, 99–137 (1984)MATH Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Ann. Rev. 16, 99–137 (1984)MATH
go back to reference Sagaut, P.: Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: theoretical formulations. Comput. Math. Appl. 59(7), 2194–2199 (2010)MathSciNetCrossRef Sagaut, P.: Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: theoretical formulations. Comput. Math. Appl. 59(7), 2194–2199 (2010)MathSciNetCrossRef
go back to reference Sauro, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Clarendon Press, Oxford (2001)MATH Sauro, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Clarendon Press, Oxford (2001)MATH
go back to reference Schlatter, P., Stolz, S., Kleiser, L.: Large-eddy simulation of spatial transition in plane channel flow. J. Turbul. 7, 1–24 (2006)MathSciNetCrossRef Schlatter, P., Stolz, S., Kleiser, L.: Large-eddy simulation of spatial transition in plane channel flow. J. Turbul. 7, 1–24 (2006)MathSciNetCrossRef
go back to reference Shua, C., Niua, X.D., Chewa, Y.T., Caib, Q.D.: A fractional step lattice Boltzmann method for simulating high Reynolds number flows. Math. Comput. Simul. 72, 201–205 (2006)MathSciNetCrossRef Shua, C., Niua, X.D., Chewa, Y.T., Caib, Q.D.: A fractional step lattice Boltzmann method for simulating high Reynolds number flows. Math. Comput. Simul. 72, 201–205 (2006)MathSciNetCrossRef
go back to reference Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids. 11(7), 1699–1701 (1999)CrossRef Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids. 11(7), 1699–1701 (1999)CrossRef
go back to reference Wang, J., Wang, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65, 262–286 (2013)MathSciNetCrossRef Wang, J., Wang, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65, 262–286 (2013)MathSciNetCrossRef
go back to reference Weickert, M., Teike, G., Schmidt, O., Sommerfeld, M.: Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Math. Appl. 59(7), 2200–2214 (2010)MathSciNetCrossRef Weickert, M., Teike, G., Schmidt, O., Sommerfeld, M.: Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Math. Appl. 59(7), 2200–2214 (2010)MathSciNetCrossRef
go back to reference Yasuda, T., Satofuka, N.: An improved entropic lattice Boltzmann model for parallel computation. Comput. Fluids. 45(1), 187–190 (2011)MathSciNetCrossRef Yasuda, T., Satofuka, N.: An improved entropic lattice Boltzmann model for parallel computation. Comput. Fluids. 45(1), 187–190 (2011)MathSciNetCrossRef
Metadata
Title
Large Eddy Simulation-Based Lattice Boltzmann Method with Different Collision Models
Authors
Mohamed Hamdi
Souheil Elalimi
Sassi Ben Nasrallah
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62572-0_43