Skip to main content
Top

2017 | OriginalPaper | Chapter

Large Networks of Diameter Two Based on Cayley Graphs

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this contribution we present a construction of large networks of diameter two and of order \(\frac{1}{2}d^2\) for every degree \(d\ge 8\), based on Cayley graphs with surprisingly simple underlying groups. For several small degrees we construct Cayley graphs of diameter two and of order greater than \(\frac{2}{3}\) of Moore bound and we show that Cayley graphs of degrees \(d\in \{16,17,18,23,24,31,\dots ,35\}\) constructed in this paper are the largest currently known vertex-transitive graphs of diameter two.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Abas, M.: Cayley graphs of diameter two with order greater than 0.684 of the Moore bound for any degree. Eur. J. Comb. 57, 109–120 (2016)MathSciNetCrossRefMATH Abas, M.: Cayley graphs of diameter two with order greater than 0.684 of the Moore bound for any degree. Eur. J. Comb. 57, 109–120 (2016)MathSciNetCrossRefMATH
6.
go back to reference Heydemann, M.C.: Cayley graphs and interconnections networks. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry, Kluwer, pp. 167–224 (1997) Heydemann, M.C.: Cayley graphs and interconnections networks. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry, Kluwer, pp. 167–224 (1997)
7.
go back to reference McKay, B.D., Miller, M., Širáň, J.: A note on large graphs of diameter two and given maximum degree. J. Combin. Theory Ser. B 74, 110–118 (1998)MathSciNetCrossRefMATH McKay, B.D., Miller, M., Širáň, J.: A note on large graphs of diameter two and given maximum degree. J. Combin. Theory Ser. B 74, 110–118 (1998)MathSciNetCrossRefMATH
8.
go back to reference Šiagiová, J.: A note on the McKay-Miller-Širáň graphs. J. Comb. Theor. Ser. B 81, 205–208 (2001)CrossRefMATH Šiagiová, J.: A note on the McKay-Miller-Širáň graphs. J. Comb. Theor. Ser. B 81, 205–208 (2001)CrossRefMATH
9.
go back to reference Šiagiová, J.: A Moore-like bound for graphs of diameter 2 and given degree, obtained as abelian lifts of dipoles. Acta Mathematica Universitatis Comenianae 71(2), 157–161 (2002)MathSciNetMATH Šiagiová, J.: A Moore-like bound for graphs of diameter 2 and given degree, obtained as abelian lifts of dipoles. Acta Mathematica Universitatis Comenianae 71(2), 157–161 (2002)MathSciNetMATH
10.
go back to reference Šiagiová, J., Širáň, J.: A note on large Cayley graphs of diameter two and given degree. Discrete Math. 305(1–3), 379–382 (2005)MathSciNetMATH Šiagiová, J., Širáň, J.: A note on large Cayley graphs of diameter two and given degree. Discrete Math. 305(1–3), 379–382 (2005)MathSciNetMATH
11.
go back to reference Šiagiová, J., Širáň, J.: Approaching the Moore bound for diameter two by Cayley graphs. J. Comb. Theor. Ser. B 102(2), 470–473 (2012)MathSciNetCrossRefMATH Šiagiová, J., Širáň, J.: Approaching the Moore bound for diameter two by Cayley graphs. J. Comb. Theor. Ser. B 102(2), 470–473 (2012)MathSciNetCrossRefMATH
Metadata
Title
Large Networks of Diameter Two Based on Cayley Graphs
Author
Marcel Abas
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57264-2_23

Premium Partner