Skip to main content
Top

2018 | OriginalPaper | Chapter

Large-Scale Atmospheric Phenomena Under the Lens of Ordinal Time-Series Analysis and Information Theory Measures

Authors : J. I. Deza, G. Tirabassi, M. Barreiro, C. Masoller

Published in: Advances in Nonlinear Geosciences

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review presents a synthesis of our work done in the framework of the European project Learning about Interacting Networks in Climate (LINC, climatelinc.eu). We have applied tools of information theory and ordinal time series analysis to investigate large scale atmospheric phenomena from climatological datasets. Specifically, we considered monthly and daily Surface Air Temperature (SAT) time series (NCEP reanalysis) and used the climate network approach to represent statistical similarities and interdependencies between SAT time series in different geographical regions. Ordinal analysis uncovers how the structure of the climate network changes in different time scales (intra-season, intra-annual, and longer). We have also analyzed the directionally of the links of the network, and we have proposed novel approaches for uncovering communities formed by geographical regions with similar SAT properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Albert, R., and A.L. Barabasi. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74: 47–97.CrossRef Albert, R., and A.L. Barabasi. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74: 47–97.CrossRef
go back to reference Arizmendi, F., M. Barreiro, and C. Masoller. 2017. Identifying large-scale patterns of nonlinearity and unpredictability in atmospheric data. Scientific Reports 7: 45676.CrossRef Arizmendi, F., M. Barreiro, and C. Masoller. 2017. Identifying large-scale patterns of nonlinearity and unpredictability in atmospheric data. Scientific Reports 7: 45676.CrossRef
go back to reference Bandt, C., and B. Pompe. 2002. Permutation entropy: a natural complexity measure for time series. Physical Review Letters 88: 174102.CrossRef Bandt, C., and B. Pompe. 2002. Permutation entropy: a natural complexity measure for time series. Physical Review Letters 88: 174102.CrossRef
go back to reference Barreiro, M., A.C. Marti, and C. Masoller. 2011. Inferring long memory processes in the climate network via ordinal pattern analysis. Chaos 21: 013101.CrossRef Barreiro, M., A.C. Marti, and C. Masoller. 2011. Inferring long memory processes in the climate network via ordinal pattern analysis. Chaos 21: 013101.CrossRef
go back to reference Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. 2006. Complex networks: structure and dynamics. Physics Reports 424: 175–308.CrossRef Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. 2006. Complex networks: structure and dynamics. Physics Reports 424: 175–308.CrossRef
go back to reference Deza, J.I., M. Barreiro, and C. Masoller. 2013. Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales. The European Physical Journal Special Topics 222: 511–523.CrossRef Deza, J.I., M. Barreiro, and C. Masoller. 2013. Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales. The European Physical Journal Special Topics 222: 511–523.CrossRef
go back to reference Deza, J.I., M. Barreiro, and C. Masoller. 2015. Assessing the direction of climate interactions by means of complex networks and information theoretic tools. Chaos 25: 033105. Deza, J.I., M. Barreiro, and C. Masoller. 2015. Assessing the direction of climate interactions by means of complex networks and information theoretic tools. Chaos 25: 033105.
go back to reference Donges, J.F., Y. Zou, N. Marwan, and J. Kurths. 2009. The backbone of the climate network. EPL 87: 48007.CrossRef Donges, J.F., Y. Zou, N. Marwan, and J. Kurths. 2009. The backbone of the climate network. EPL 87: 48007.CrossRef
go back to reference Fountalis, I., A. Bracco, and C. Dovrolis. 2014. Spatio-temporal network analysis for studying climate patterns. Climate Dynamics 42: 879–899.CrossRef Fountalis, I., A. Bracco, and C. Dovrolis. 2014. Spatio-temporal network analysis for studying climate patterns. Climate Dynamics 42: 879–899.CrossRef
go back to reference Hlinka, J., D. Hartman, M. Vejmelka, D. Novotna, and M. Palus. 2014. Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity. Climate Dynamics 42: 1873–1886.CrossRef Hlinka, J., D. Hartman, M. Vejmelka, D. Novotna, and M. Palus. 2014. Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity. Climate Dynamics 42: 1873–1886.CrossRef
go back to reference Newman, M.E.J. 2003. The structure and function of complex networks. SIAM Review 45: 167–256.CrossRef Newman, M.E.J. 2003. The structure and function of complex networks. SIAM Review 45: 167–256.CrossRef
go back to reference Rosvall, R., and C.T. Bergstrom. 2007. An information-theoretic framework for resolving community structure in complex networks. PNAS 104: 7327–7331.CrossRef Rosvall, R., and C.T. Bergstrom. 2007. An information-theoretic framework for resolving community structure in complex networks. PNAS 104: 7327–7331.CrossRef
go back to reference Rubido, N., A.C. Martí, E. Bianco-Martínez, C. Grebogi, M.S. Baptista, and C. Masoller. 2014. Exact detection of direct links in networks of interacting dynamical units. New Journal of Physics 16: 093010.CrossRef Rubido, N., A.C. Martí, E. Bianco-Martínez, C. Grebogi, M.S. Baptista, and C. Masoller. 2014. Exact detection of direct links in networks of interacting dynamical units. New Journal of Physics 16: 093010.CrossRef
go back to reference Serrano, M.A., M. Boguña, and A. Vespignani. 2009. Extracting the multiscale backbone of complex weighted networks. PNAS 106: 6483–6488.CrossRef Serrano, M.A., M. Boguña, and A. Vespignani. 2009. Extracting the multiscale backbone of complex weighted networks. PNAS 106: 6483–6488.CrossRef
go back to reference Shandilya, S.G., and M. Timme. 2011. Inferring network topology from complex dynamics. New Journal of Physics 13: 013004.CrossRef Shandilya, S.G., and M. Timme. 2011. Inferring network topology from complex dynamics. New Journal of Physics 13: 013004.CrossRef
go back to reference Timme, M. 2007. Revealing network connectivity from response dynamics. Physical Review Letters 98: 224101.CrossRef Timme, M. 2007. Revealing network connectivity from response dynamics. Physical Review Letters 98: 224101.CrossRef
go back to reference ———. 2016. Unravelling the community structure of the climate system by using lags and symbolic time-series analysis. Scientific Reports 6: 29804.CrossRef ———. 2016. Unravelling the community structure of the climate system by using lags and symbolic time-series analysis. Scientific Reports 6: 29804.CrossRef
go back to reference Tirabassi, G., C. Masoller, and M. Barreiro. 2015a. A study of the air–sea interaction in the South Atlantic Convergence Zone through Granger causality. International Journal of Climatology 35: 3440.CrossRef Tirabassi, G., C. Masoller, and M. Barreiro. 2015a. A study of the air–sea interaction in the South Atlantic Convergence Zone through Granger causality. International Journal of Climatology 35: 3440.CrossRef
go back to reference Tirabassi, G., R. Sevilla-Escoboza, J.M. Buldú, and C. Masoller. 2015b. Inferring the connectivity of coupled oscillators from time series statistical similarity analysis. Scientific Reports 5: 10829.CrossRef Tirabassi, G., R. Sevilla-Escoboza, J.M. Buldú, and C. Masoller. 2015b. Inferring the connectivity of coupled oscillators from time series statistical similarity analysis. Scientific Reports 5: 10829.CrossRef
go back to reference Tirabassi, G., L. Sommerlade, and C. Masoller. 2017. Inferring directed climatic interactions with renormalized partial directed coherence and directed partial correlation. Chaos 27: 035815.CrossRef Tirabassi, G., L. Sommerlade, and C. Masoller. 2017. Inferring directed climatic interactions with renormalized partial directed coherence and directed partial correlation. Chaos 27: 035815.CrossRef
go back to reference Tsonis, A.A., and P. Roebber. 2004. The architecture of the climate network. Physica A 333: 497–504.CrossRef Tsonis, A.A., and P. Roebber. 2004. The architecture of the climate network. Physica A 333: 497–504.CrossRef
go back to reference Tsonis, A.A., and K.L. Swanson. 2008. Topology and predictability of El Nino and La Nina networks. Physical Review Letters 100: 228502.CrossRef Tsonis, A.A., and K.L. Swanson. 2008. Topology and predictability of El Nino and La Nina networks. Physical Review Letters 100: 228502.CrossRef
go back to reference Yamasaki, K., A. Gozolchiani, and S. Havlin. 2008. Climate networks around the globe are significantly affected by El Nino. Physical Review Letters 100: 228501.CrossRef Yamasaki, K., A. Gozolchiani, and S. Havlin. 2008. Climate networks around the globe are significantly affected by El Nino. Physical Review Letters 100: 228501.CrossRef
go back to reference Yu, D., and U. Parlitz. 2011. Inferring network connectivity by delayed feedback control. PloS One 6: e24333.CrossRef Yu, D., and U. Parlitz. 2011. Inferring network connectivity by delayed feedback control. PloS One 6: e24333.CrossRef
go back to reference Zappalà, D.A., M. Barreiro, and C. Masoller. 2016. Global atmospheric dynamics investigated by using Hilbert frequency analysis. Entropy 18: 408.CrossRef Zappalà, D.A., M. Barreiro, and C. Masoller. 2016. Global atmospheric dynamics investigated by using Hilbert frequency analysis. Entropy 18: 408.CrossRef
go back to reference Zebiak, S.E. 1993. Air–sea interaction in the equatorial Atlantic region. Journal of Climate 6: 1567.CrossRef Zebiak, S.E. 1993. Air–sea interaction in the equatorial Atlantic region. Journal of Climate 6: 1567.CrossRef
Metadata
Title
Large-Scale Atmospheric Phenomena Under the Lens of Ordinal Time-Series Analysis and Information Theory Measures
Authors
J. I. Deza
G. Tirabassi
M. Barreiro
C. Masoller
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-58895-7_4