Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Large-Scale Inference of Liver Fat with Neural Networks on UK Biobank Body MRI

Authors : Taro Langner, Robin Strand, Håkan Ahlström, Joel Kullberg

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Publisher: Springer International Publishing

Abstract

The UK Biobank Imaging Study has acquired medical scans of more than 40,000 volunteer participants. The resulting wealth of anatomical information has been made available for research, together with extensive metadata including measurements of liver fat. These values play an important role in metabolic disease, but are only available for a minority of imaged subjects as their collection requires the careful work of image analysts on dedicated liver MRI. Another UK Biobank protocol is neck-to-knee body MRI for analysis of body composition. The resulting volumes can also quantify fat fractions, even though they were reconstructed with a two- instead of a three-point Dixon technique. In this work, a novel framework for automated inference of liver fat from UK Biobank neck-to-knee body MRI is proposed. A ResNet50 was trained for regression on two-dimensional slices from these scans and the reference values as target, without any need for ground truth segmentations. Once trained, it performs fast, objective, and fully automated predictions that require no manual intervention. On the given data, it closely emulates the reference method, reaching a level of agreement comparable to different gold standard techniques. The network learned to rectify non-linearities in the fat fraction values and identified several outliers in the reference. It outperformed a multi-atlas segmentation baseline and inferred new estimates for all imaged subjects lacking reference values, expanding the total number of liver fat measurements by factor six.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Browning, J.D., et al.: Prevalence of hepatic steatosis in an urban population in the united states: impact of ethnicity. Hepatology 40(6), 1387–1395 (2004) CrossRef Browning, J.D., et al.: Prevalence of hepatic steatosis in an urban population in the united states: impact of ethnicity. Hepatology 40(6), 1387–1395 (2004) CrossRef
3.
go back to reference Ekström, S., Malmberg, F., Ahlström, H., Kullberg, J., Strand, R.: Fast Graph-Cut Based Optimization for Practical Dense Deformable Registration of Volume Images (2018). arXiv:​1810.​08427 [cs] Ekström, S., Malmberg, F., Ahlström, H., Kullberg, J., Strand, R.: Fast Graph-Cut Based Optimization for Practical Dense Deformable Registration of Volume Images (2018). arXiv:​1810.​08427 [cs]
6.
go back to reference Hernando, D., et al.: Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 15 t and 3t using a fat-water phantom. Magn. Res. Med. 77(4), 1516–1524 (2017) CrossRef Hernando, D., et al.: Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 15 t and 3t using a fat-water phantom. Magn. Res. Med. 77(4), 1516–1524 (2017) CrossRef
8.
go back to reference Kukuk, G.M., et al.: Comparison between modified dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur. Radiol. 25(10), 2869–2879 (2015) CrossRef Kukuk, G.M., et al.: Comparison between modified dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur. Radiol. 25(10), 2869–2879 (2015) CrossRef
9.
go back to reference Langner, T., Ahlström, H., Kullberg, J.: Large-scale biometry with interpretable neural network regression on UK biobank body MRI (2020). arXiv preprint arXiv:​2002.​06862 Langner, T., Ahlström, H., Kullberg, J.: Large-scale biometry with interpretable neural network regression on UK biobank body MRI (2020). arXiv preprint arXiv:​2002.​06862
11.
go back to reference Pagadala, M.R., McCullough, A.J.: The relevance of liver histology to predicting clinically meaningful outcomes in nonalcoholic steatohepatitis. Clin. Liver Dis. 16(3), 487–504 (2012) CrossRef Pagadala, M.R., McCullough, A.J.: The relevance of liver histology to predicting clinically meaningful outcomes in nonalcoholic steatohepatitis. Clin. Liver Dis. 16(3), 487–504 (2012) CrossRef
12.
go back to reference Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158 (2018) CrossRef Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158 (2018) CrossRef
13.
go back to reference Reeder, S.B., Cruite, I., Hamilton, G., Sirlin, C.B.: Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J. Magn. Reson. Imaging 34(4), 729–749 (2011) CrossRef Reeder, S.B., Cruite, I., Hamilton, G., Sirlin, C.B.: Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J. Magn. Reson. Imaging 34(4), 729–749 (2011) CrossRef
16.
go back to reference Wilman, H.R., et al.: Characterisation of liver fat in the UK biobank cohort. PloS one 12(2), e0172921 (2017) CrossRef Wilman, H.R., et al.: Characterisation of liver fat in the UK biobank cohort. PloS one 12(2), e0172921 (2017) CrossRef
17.
go back to reference Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE Trans. Med. Imaging 36(10), 2057–2067 (2017) CrossRef Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE Trans. Med. Imaging 36(10), 2057–2067 (2017) CrossRef
18.
go back to reference Yokoo, T., et al.: Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology 286(2), 486–498 (2018) CrossRef Yokoo, T., et al.: Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology 286(2), 486–498 (2018) CrossRef
19.
go back to reference Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L., Wymer, M.: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1), 73–84 (2016) CrossRef Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L., Wymer, M.: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1), 73–84 (2016) CrossRef
Metadata
Title
Large-Scale Inference of Liver Fat with Neural Networks on UK Biobank Body MRI
Authors
Taro Langner
Robin Strand
Håkan Ahlström
Joel Kullberg
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59713-9_58

Premium Partner