Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2019

12-12-2018

Large-Scale Molecular Dynamics Simulation Studies on Deformation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis

Authors: Krishna Chaitanya Katakam, Pradeep Gupta, Natraj Yedla

Published in: Journal of Materials Engineering and Performance | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report large-scale molecular dynamics simulation deformation studies of Ni nanowire (NW) of size 100 Å (x) × 1000 Å (y) × 100 Å (z) comprising of 925,965 atoms. Surface and internal defects are introduced to study their effect on the surface profile, strength, fracture behavior and deformation mechanisms. Tensile tests have been carried out at a temperature of 10 K and at a strain rate of 108 s−1. Periodic boundary condition is applied along the loading direction (y). Peak strength of 23 GPa is observed in the perfect NW, and the strength decreases with defects. The surface profiles of the deformed NWs show intrusion and extrusion regions corresponding to slip steps with wider valleys in the defect NWs. Several intrinsic and extrinsic parallel stacking faults (SFs) are generated after yielding by slip occurring on {111} planes. The calculated SF widths are in the range of 0.85-2.57 nm in the perfect NW. The dislocations are mainly Shockley partial dislocations of type 1/6 \(\left\langle {112} \right\rangle\),  and Schmid’s factor (m) obtained is 0.471. Twinning dislocation of types 1/9 \(\left\langle {221} \right\rangle\) and 1/18 \(\left\langle {172} \right\rangle\) is also observed in the SFs. The density of Shockley partial dislocations is observed to be the maximum in all the NWs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Strain Rate Dependent Mechanical Properties in Single Crystal Nickel Nanowires, Appl. Phys. Letts, 2013, 102, p 83102CrossRef C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Strain Rate Dependent Mechanical Properties in Single Crystal Nickel Nanowires, Appl. Phys. Letts, 2013, 102, p 83102CrossRef
2.
go back to reference T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation, Phys. Rev. Lett., 2008, 100(2), p 1–4 T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation, Phys. Rev. Lett., 2008, 100(2), p 1–4
3.
go back to reference P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (metal)-Cu 50 Zr 50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50CrossRef P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (metal)-Cu 50 Zr 50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50CrossRef
4.
go back to reference G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, and P.M. Gullett, A Molecular Dynamics Study of Void Growth and Coalescence in Single Crystal Nickel, Int. J. Plast, 2006, 22(2), p 257–278CrossRef G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, and P.M. Gullett, A Molecular Dynamics Study of Void Growth and Coalescence in Single Crystal Nickel, Int. J. Plast, 2006, 22(2), p 257–278CrossRef
5.
go back to reference D.K. Das and M.M. Ghosh, On Mechanical Properties of Graphene Sheet Estimated Using Molecular Dynamics Simulations, J. Mater. Eng. Perform., 2017, 26(9), p 4522–4532CrossRef D.K. Das and M.M. Ghosh, On Mechanical Properties of Graphene Sheet Estimated Using Molecular Dynamics Simulations, J. Mater. Eng. Perform., 2017, 26(9), p 4522–4532CrossRef
6.
go back to reference N. Yedla, P. Gupta, T.Y. Ng, and K.R. Geethalakshmi, Effect of Loading Direction and Defects on the Strength and Fracture Behavior of Biphenylene Based Graphene Monolayer, Mater. Chem. Phys., 2017, 202, p 127–135CrossRef N. Yedla, P. Gupta, T.Y. Ng, and K.R. Geethalakshmi, Effect of Loading Direction and Defects on the Strength and Fracture Behavior of Biphenylene Based Graphene Monolayer, Mater. Chem. Phys., 2017, 202, p 127–135CrossRef
7.
go back to reference M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, T. Jiao, and R.J. Clifton, Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates, J. Mater. Eng. Perform., 2015, 24(2), p 778–798CrossRef M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, T. Jiao, and R.J. Clifton, Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates, J. Mater. Eng. Perform., 2015, 24(2), p 778–798CrossRef
9.
go back to reference A. Movahedi-Rad and R. Alizadeh, Dependence of Strain Rate Sensitivity on the Slip System: A Molecular Dynamics Simulation, J. Mater. Eng. Perform., 2017, 26(11), p 5173–5179CrossRef A. Movahedi-Rad and R. Alizadeh, Dependence of Strain Rate Sensitivity on the Slip System: A Molecular Dynamics Simulation, J. Mater. Eng. Perform., 2017, 26(11), p 5173–5179CrossRef
10.
go back to reference M.M. Ghosh, S. Ghosh, and S.K. Pabi, Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids, J. Mater. Eng. Perform., 2013, 22(6), p 1525–1529CrossRef M.M. Ghosh, S. Ghosh, and S.K. Pabi, Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids, J. Mater. Eng. Perform., 2013, 22(6), p 1525–1529CrossRef
11.
go back to reference H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, and Y.L. Li, Molecular Dynamics Study of Deformation Behavior of Crystalline Cu/amorphous Cu50Zr50 Nanolaminates, Mater. Des., 2017, 127, p 173–182CrossRef H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, and Y.L. Li, Molecular Dynamics Study of Deformation Behavior of Crystalline Cu/amorphous Cu50Zr50 Nanolaminates, Mater. Des., 2017, 127, p 173–182CrossRef
12.
go back to reference F. Baras, V. Turlo, and O. Politano, Dissolution at Interfaces in Layered Solid-Liquid Thin Films: A Key Step in Joining Process, J. Mater. Eng. Perform., 2016, 25(8), p 3270–3274CrossRef F. Baras, V. Turlo, and O. Politano, Dissolution at Interfaces in Layered Solid-Liquid Thin Films: A Key Step in Joining Process, J. Mater. Eng. Perform., 2016, 25(8), p 3270–3274CrossRef
13.
go back to reference P.S. Branı, Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain—A MD Study - Branicio_Rino _ Phys Rev B 62 (2000) 16950, 2000, 62(24), p 950–955. P.S. Branı, Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain—A MD Study - Branicio_Rino _ Phys Rev B 62 (2000) 16950, 2000, 62(24), p 950–955.
14.
go back to reference Y.H. Wen, Z.Z. Zhu, G.F. Shao, and R.Z. Zhu, The Uniaxial Tensile Deformation of Ni Nanowire: Atomic-Scale Computer Simulations, Phys. E Low-Dimens. Syst. Nanostruct., 2005, 27(1–2), p 113–120CrossRef Y.H. Wen, Z.Z. Zhu, G.F. Shao, and R.Z. Zhu, The Uniaxial Tensile Deformation of Ni Nanowire: Atomic-Scale Computer Simulations, Phys. E Low-Dimens. Syst. Nanostruct., 2005, 27(1–2), p 113–120CrossRef
15.
go back to reference Y.H. Wen, Z.Z. Zhu, and R.Z. Zhu, Molecular Dynamics Study of the Mechanical Behavior of Nickel Nanowire: Strain Rate Effects, Comput. Mater. Sci., 2008, 41(4), p 553–560CrossRef Y.H. Wen, Z.Z. Zhu, and R.Z. Zhu, Molecular Dynamics Study of the Mechanical Behavior of Nickel Nanowire: Strain Rate Effects, Comput. Mater. Sci., 2008, 41(4), p 553–560CrossRef
16.
go back to reference D. Huang, Q. Zhang, and P. Qiao, Molecular Dynamics Evaluation of Strain Rate and Size Effects on Mechanical Properties of FCC Nickel Nanowires, Comput. Mater. Sci., 2011, 50(3), p 903–910CrossRef D. Huang, Q. Zhang, and P. Qiao, Molecular Dynamics Evaluation of Strain Rate and Size Effects on Mechanical Properties of FCC Nickel Nanowires, Comput. Mater. Sci., 2011, 50(3), p 903–910CrossRef
18.
go back to reference H.F. Zhan, Y.T. Gu, C. Yan, X.Q. Feng, and P.K.D.V. Yarlagadda, Numerical Exploration of Plastic Deformation Mechanisms of Copper Nanowires with Surface Defects, Comput. Mater. Sci., 2011, 50(12), p 3425–3430CrossRef H.F. Zhan, Y.T. Gu, C. Yan, X.Q. Feng, and P.K.D.V. Yarlagadda, Numerical Exploration of Plastic Deformation Mechanisms of Copper Nanowires with Surface Defects, Comput. Mater. Sci., 2011, 50(12), p 3425–3430CrossRef
19.
go back to reference H. Zhan and Y. Gu, Atomistic Exploration of Deformation Properties of Copper Nanowires with Pre-Existing Defects, Comput. Model. Eng. Sci., 2011, 80(1), p 23–56 H. Zhan and Y. Gu, Atomistic Exploration of Deformation Properties of Copper Nanowires with Pre-Existing Defects, Comput. Model. Eng. Sci., 2011, 80(1), p 23–56
22.
go back to reference M.J. Buehler and H. Gao, Ultra-Large Scale Simulations of Dynamic Materials Failure, Handb. Theor. Comput. Nanotechnol., 2005, 10, p 1–41 M.J. Buehler and H. Gao, Ultra-Large Scale Simulations of Dynamic Materials Failure, Handb. Theor. Comput. Nanotechnol., 2005, 10, p 1–41
23.
go back to reference M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang, Development of Interatomic Potentials Appropriate for Simulation of Liquid and Glass Properties of nizr2 Alloy, Philos. Mag., 2012, 92(35), p 4454–4469CrossRef M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang, Development of Interatomic Potentials Appropriate for Simulation of Liquid and Glass Properties of nizr2 Alloy, Philos. Mag., 2012, 92(35), p 4454–4469CrossRef
24.
go back to reference J.J. Bean and K.P. McKenna, Origin of Differences in the Excess Volume of Copper and Nickel Grain Boundaries, Acta Mater., 2016, 110, p 246–257CrossRef J.J. Bean and K.P. McKenna, Origin of Differences in the Excess Volume of Copper and Nickel Grain Boundaries, Acta Mater., 2016, 110, p 246–257CrossRef
25.
go back to reference S.M. Rassoulinejad-Mousavi, Y. Mao, and Y. Zhang, Evaluation of Copper, Aluminum, and Nickel Interatomic Potentials on Predicting the Elastic Properties, J. Appl. Phys., 2016, 119(24). S.M. Rassoulinejad-Mousavi, Y. Mao, and Y. Zhang, Evaluation of Copper, Aluminum, and Nickel Interatomic Potentials on Predicting the Elastic Properties, J. Appl. Phys., 2016, 119(24).
33.
go back to reference W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, 31(3), p 1695CrossRef W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, 31(3), p 1695CrossRef
34.
go back to reference A.R. Setoodeh and H. Attariani, Nanoscale Simulations of Bauschinger Effects on a Nickel Nanowire, Mater. Lett., 2008, 62(27), p 4266–4268CrossRef A.R. Setoodeh and H. Attariani, Nanoscale Simulations of Bauschinger Effects on a Nickel Nanowire, Mater. Lett., 2008, 62(27), p 4266–4268CrossRef
36.
go back to reference J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic Simulations of the Yielding of Gold Nanowires, Acta Mater., 2006, 54(3), p 643–653CrossRef J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic Simulations of the Yielding of Gold Nanowires, Acta Mater., 2006, 54(3), p 643–653CrossRef
39.
go back to reference A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20(8), p 85007CrossRef A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20(8), p 85007CrossRef
40.
go back to reference R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1983, p 697 R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1983, p 697
41.
go back to reference E.A. Alfyorova and D.V. Lychagin, Self-Organization of Plastic Deformation and Deformation Relief in FCC Single Crystals, Mech. Mater., 2017, 2018(117), p 202–213 E.A. Alfyorova and D.V. Lychagin, Self-Organization of Plastic Deformation and Deformation Relief in FCC Single Crystals, Mech. Mater., 2017, 2018(117), p 202–213
42.
go back to reference D.V. Lychagin, E.A. Alfyorova, and A.S. Tailashev, Misorientation Development During the Formation of Macrobands in the [001] Nickel Single Crystals, Russ. Phys. J., 2015, 58(5), p 717–723CrossRef D.V. Lychagin, E.A. Alfyorova, and A.S. Tailashev, Misorientation Development During the Formation of Macrobands in the [001] Nickel Single Crystals, Russ. Phys. J., 2015, 58(5), p 717–723CrossRef
45.
go back to reference J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982 J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982
46.
go back to reference G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986 G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986
47.
go back to reference L. Smith, J.A. Zimmerman, L.M. Hale, and D. Farkas, Molecular Dynamics Study of Deformation and Fracture in a Tantalum Nano-Crystalline Thin Film, Model. Simul. Mater. Sci. Eng., 2014, 22(4). L. Smith, J.A. Zimmerman, L.M. Hale, and D. Farkas, Molecular Dynamics Study of Deformation and Fracture in a Tantalum Nano-Crystalline Thin Film, Model. Simul. Mater. Sci. Eng., 2014, 22(4).
48.
go back to reference D. Huang, Q. Zhang, and Y. Guo, Molecular Dynamics Simulation for Axial Tension Process of α-Fe and Ni Nano Wires, Ordnance Mater. Sci. Eng., 2006, 5, p 4 D. Huang, Q. Zhang, and Y. Guo, Molecular Dynamics Simulation for Axial Tension Process of α-Fe and Ni Nano Wires, Ordnance Mater. Sci. Eng., 2006, 5, p 4
50.
go back to reference D. Chen, J. Wang, T. Chen, and L. Shao, Defect Annihilation at Grain Boundaries in Alpha-Fe, Sci. Rep., 2013, 3(13), p 1–5 D. Chen, J. Wang, T. Chen, and L. Shao, Defect Annihilation at Grain Boundaries in Alpha-Fe, Sci. Rep., 2013, 3(13), p 1–5
53.
go back to reference A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, I. Povstugar, P. Choi, D. Raabe, and E. Bitzek, Atom Probe Informed Simulations of Dislocation-Precipitate Interactions Reveal the Importance of Local Interface Curvature, Acta Mater., 2015, 92, p 33–45CrossRef A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, I. Povstugar, P. Choi, D. Raabe, and E. Bitzek, Atom Probe Informed Simulations of Dislocation-Precipitate Interactions Reveal the Importance of Local Interface Curvature, Acta Mater., 2015, 92, p 33–45CrossRef
54.
go back to reference G. Sainath and B.K. Choudhary, Molecular Dynamics Simulation of Twin Boundary Effect on Deformation of Cu Nanopillars, Phys. Lett. A, 2015, 379(34–35), p 1902–1905CrossRef G. Sainath and B.K. Choudhary, Molecular Dynamics Simulation of Twin Boundary Effect on Deformation of Cu Nanopillars, Phys. Lett. A, 2015, 379(34–35), p 1902–1905CrossRef
55.
go back to reference S. Zhang and Y. Wang, Molecular Dynamics Simulation of Tension-Compression Asymmetry in Plasticity of Fivefold Twinned Ag Nanopillars, Phys. Lett. Sect. A Gen. At. Solid State Phys., 2015, 379(6), p 603–606 S. Zhang and Y. Wang, Molecular Dynamics Simulation of Tension-Compression Asymmetry in Plasticity of Fivefold Twinned Ag Nanopillars, Phys. Lett. Sect. A Gen. At. Solid State Phys., 2015, 379(6), p 603–606
58.
go back to reference S. Aubry and D.A. Hughes, Reductions in Stacking Fault Widths in Fcc Crystals: Semiempirical Calculations, Phys. Rev. B Condens. Matter Mater. Phys., 2006, 73(22), p 1–15CrossRef S. Aubry and D.A. Hughes, Reductions in Stacking Fault Widths in Fcc Crystals: Semiempirical Calculations, Phys. Rev. B Condens. Matter Mater. Phys., 2006, 73(22), p 1–15CrossRef
60.
go back to reference X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, L. Su, and L. Zhan, Deformation Mechanisms in Nanotwinned Copper by Molecular Dynamics Simulation, Mater. Sci. Eng. A, 2016, 2017(687), p 343–351 X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, L. Su, and L. Zhan, Deformation Mechanisms in Nanotwinned Copper by Molecular Dynamics Simulation, Mater. Sci. Eng. A, 2016, 2017(687), p 343–351
61.
go back to reference X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia, and H.F. Xu, Formation Mechanism of Wide Stacking Faults in Nanocrystalline Al, Appl. Phys. Lett., 2004, 84(18), p 3564–3566CrossRef X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia, and H.F. Xu, Formation Mechanism of Wide Stacking Faults in Nanocrystalline Al, Appl. Phys. Lett., 2004, 84(18), p 3564–3566CrossRef
63.
go back to reference C.B. Carter and S.M. Holmes, The Stacking Fault Energy of Nickel, Philos. Mag., 1977, 35(5), p 1161–1172CrossRef C.B. Carter and S.M. Holmes, The Stacking Fault Energy of Nickel, Philos. Mag., 1977, 35(5), p 1161–1172CrossRef
65.
go back to reference J.A. Zimmerman, H. Gao, and F.F. Abraham, Generalized Stacking Fault Energies for Embedded Atom FCC Metals, Model. Simul. Mater. Sci. Eng., 2000, 8, p 103–115CrossRef J.A. Zimmerman, H. Gao, and F.F. Abraham, Generalized Stacking Fault Energies for Embedded Atom FCC Metals, Model. Simul. Mater. Sci. Eng., 2000, 8, p 103–115CrossRef
66.
go back to reference Z.Q. Wang, I.J. Beyerlein, and R. LeSar, Dislocation Motion in High Strain-Rate Deformation, Philos. Mag., 2007, 87(16), p 2263–2279CrossRef Z.Q. Wang, I.J. Beyerlein, and R. LeSar, Dislocation Motion in High Strain-Rate Deformation, Philos. Mag., 2007, 87(16), p 2263–2279CrossRef
67.
go back to reference Q. Kun, Y. Li-Ming, and H. Shi-Sheng, Mechanism of Strain Rate Effect Based on Dislocation Theory, Chin. Phys. Lett., 2009, 26(3), p 36103CrossRef Q. Kun, Y. Li-Ming, and H. Shi-Sheng, Mechanism of Strain Rate Effect Based on Dislocation Theory, Chin. Phys. Lett., 2009, 26(3), p 36103CrossRef
Metadata
Title
Large-Scale Molecular Dynamics Simulation Studies on Deformation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis
Authors
Krishna Chaitanya Katakam
Pradeep Gupta
Natraj Yedla
Publication date
12-12-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3795-7

Other articles of this Issue 1/2019

Journal of Materials Engineering and Performance 1/2019 Go to the issue

Premium Partners