Skip to main content
Top
Published in:

05-07-2023

Large-signal behavior modeling of GaN HEMTs using SSA augmented ELM algorithm

Authors: Shaowei Wang, Jincan Zhang, Shi Yang, Hao Jin, Binrui Xu, Jinchan Wang, Liwen Zhang

Published in: Journal of Computational Electronics | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The machine-learning algorithm is a technology that can learn from data. It can solve some problems that are difficult for humans to design and use deterministic programs. Among the available machine-learning algorithms for solving these problems, the Extreme Learning Machine (ELM) algorithm is well known because it only needs to set the number of the network hidden layer nodes and could generate a unique optimal solution. And, due to the randomness of its connection weights and thresholds, the simulated effect is random. Therefore, the selection of weights and thresholds needs to be optimized. In this paper, an enhanced ELM model is proposed to model the large-signal characteristics of GaN High Electron Mobility Transistors (HEMTs). The Sparrow Search Algorithm (SSA) is used to optimize the initial weights and thresholds of the ELM algorithm, which significantly improves the prediction ability. Moreover, the SSA algorithm has the characteristics of strong optimization ability and fast convergence speed, which greatly improves the feasibility of model training. Through comparing the training effects of the SSA-ELM model and the ELM model, it can be seen that the proposed SSA-ELM model improves the ability of the ELM model to simulate the large-signal characteristics of GaN HEMTs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
13.
go back to reference Odelowo, B.O., Anderson, D.V.: Canonical ELM: improving the performance of extreme learning machines on multivariate regression tasks using canonical correlations. In: 2018 17th IEEE International conference on machine learning and applications (ICMLA), 2018, pp 734–740, doi: https://doi.org/10.1109/ICMLA.2018.00116. Odelowo, B.O., Anderson, D.V.: Canonical ELM: improving the performance of extreme learning machines on multivariate regression tasks using canonical correlations. In: 2018 17th IEEE International conference on machine learning and applications (ICMLA), 2018, pp 734–740, doi: https://​doi.​org/​10.​1109/​ICMLA.​2018.​00116.
14.
go back to reference Zhou, S., Wang, Q., Fang, Y., Liu, Q.: An extreme learning machine method for multi-classification with mahalanobis distance. In: 2018 2nd IEEE Advanced information management, communicates, electronic and automation control conference (IMCEC), 2018, pp 35–39, doi https://doi.org/10.1109/IMCEC.2018.8469606 Zhou, S., Wang, Q., Fang, Y., Liu, Q.: An extreme learning machine method for multi-classification with mahalanobis distance. In: 2018 2nd IEEE Advanced information management, communicates, electronic and automation control conference (IMCEC), 2018, pp 35–39, doi https://​doi.​org/​10.​1109/​IMCEC.​2018.​8469606
21.
go back to reference Dash, Y., Mishra, S.K., Panigrahi, B.K.: Rainfall prediction of a maritime state (Kerala), India using SLFN and ELM techniques. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2017, pp 1714–1718, doi: https://doi.org/10.1109/ICICICT1.2017.8342829. Dash, Y., Mishra, S.K., Panigrahi, B.K.: Rainfall prediction of a maritime state (Kerala), India using SLFN and ELM techniques. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2017, pp 1714–1718, doi: https://​doi.​org/​10.​1109/​ICICICT1.​2017.​8342829.
25.
go back to reference Zhang, Q., Zhang, Y., Zhu, X.: A novel node localization algorithm based on sparrow search for WSNs. In: 2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC)2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2021, pp 74–78, doi: https://doi.org/10.1109/ICEIEC51955.2021.9463839. Zhang, Q., Zhang, Y., Zhu, X.: A novel node localization algorithm based on sparrow search for WSNs. In: 2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC)2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2021, pp 74–78, doi: https://​doi.​org/​10.​1109/​ICEIEC51955.​2021.​9463839.
26.
go back to reference Zhang, S., Zhang, J., Wang, Z., Li, Q.: Regression prediction of material grinding particle size based on improved sparrow search algorithm to optimize BP neural network. In: 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), 2021, pp 216–219, doi: https://doi.org/10.1109/ISCEIC53685.2021.00052. Zhang, S., Zhang, J., Wang, Z., Li, Q.: Regression prediction of material grinding particle size based on improved sparrow search algorithm to optimize BP neural network. In: 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), 2021, pp 216–219, doi: https://​doi.​org/​10.​1109/​ISCEIC53685.​2021.​00052.
27.
go back to reference Li, H., Su, J., Liu, W., Zhang, Y., Zhou, X.: Indoor positioning model based on support vector regression optimized by the sparrow search algorithm. In: 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2021, pp 610–615, doi: https://doi.org/10.1109/IDAACS53288.2021.9660995 Li, H., Su, J., Liu, W., Zhang, Y., Zhou, X.: Indoor positioning model based on support vector regression optimized by the sparrow search algorithm. In: 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2021, pp 610–615, doi: https://​doi.​org/​10.​1109/​IDAACS53288.​2021.​9660995
28.
go back to reference Wang, H.Z., Wu, X.R., Gholinia, F.: Forecasting hydropower generation by GFDL-CM3 climate model and hybrid hydrological-Elman neural network model based on Improved Sparrow Search Algorithm (ISSA), vol 33, 2021, doi:https://doi.org/10.1002/cpe.6476 Wang, H.Z., Wu, X.R., Gholinia, F.: Forecasting hydropower generation by GFDL-CM3 climate model and hybrid hydrological-Elman neural network model based on Improved Sparrow Search Algorithm (ISSA), vol 33, 2021, doi:https://​doi.​org/​10.​1002/​cpe.​6476
Metadata
Title
Large-signal behavior modeling of GaN HEMTs using SSA augmented ELM algorithm
Authors
Shaowei Wang
Jincan Zhang
Shi Yang
Hao Jin
Binrui Xu
Jinchan Wang
Liwen Zhang
Publication date
05-07-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02067-z